IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v250y2022ics0925527322002663.html
   My bibliography  Save this article

Social equity-based distribution networks design for the COVID-19 vaccine

Author

Listed:
  • Dastgoshade, Sohaib
  • Shafiee, Mohammad
  • Klibi, Walid
  • Shishebori, Davood

Abstract

This study aims to investigate the role of social equity in vaccine distribution network design problems. Inspired by the current COVID-19 vaccine allocation in-country context, we capture social equity-based distribution by modeling three theories: Rawls’ theory, Sadr’s theory, and utilitarianism. We consider various social groups based on degree of urbanization, including inhabitants of cities, towns and suburbs, and rural areas. The distribution problem is subject to, on the one hand, demand-side uncertainty characterized by the daily contamination rate and its space–time propagation that anticipate the in-need population. On the other hand, supply-side uncertainty characterized by the stochastic arrival of vaccine doses for the supply period. To tackle this problem, we propose a novel bi-objective two-stage stochastic programming model using the sample average approximation (SAA) method. We also develop a lexicographic goal programming approach where the social equity objective is prioritized, thereafter reaching an efficiency level. Using publicly available data on COVID-19 in-country propagation and the case of two major provinces in Iran as example of middle-income country, we provide evidence of the benefits of considering social equity in a model-based decision-making approach. The findings suggest that the design solution produced by each social equity theory matches its essence in social science, differing considerably from the cost-based design solution. According to the general results, we can infer that each social equity theory has its own merits. Implementing Rawls’ theory brings about a greater coverage percentage in rural areas, while utilitarianism results in a higher allocation of vaccine doses to social groups compared to the Sadr and Rawls theories. Finally, Sadr’s theory outperforms Rawls’ in terms of both the allocation and cost perspective. These insights would help decision-makers leverage the right equity approach in the COVID-19 vaccine context, and be better prepared for any pandemic crisis that the future may unfold.

Suggested Citation

  • Dastgoshade, Sohaib & Shafiee, Mohammad & Klibi, Walid & Shishebori, Davood, 2022. "Social equity-based distribution networks design for the COVID-19 vaccine," International Journal of Production Economics, Elsevier, vol. 250(C).
  • Handle: RePEc:eee:proeco:v:250:y:2022:i:c:s0925527322002663
    DOI: 10.1016/j.ijpe.2022.108684
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527322002663
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2022.108684?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duijzer, Lotty Evertje & van Jaarsveld, Willem & Dekker, Rommert, 2018. "Literature review: The vaccine supply chain," European Journal of Operational Research, Elsevier, vol. 268(1), pages 174-192.
    2. Behbahani, Hamid & Nazari, Sobhan & Jafari Kang, Masood & Litman, Todd, 2019. "A conceptual framework to formulate transportation network design problem considering social equity criteria," Transportation Research Part A: Policy and Practice, Elsevier, vol. 125(C), pages 171-183.
    3. Gutjahr, Walter J. & Fischer, Sophie, 2018. "Equity and deprivation costs in humanitarian logistics," European Journal of Operational Research, Elsevier, vol. 270(1), pages 185-197.
    4. Azaron, A. & Brown, K.N. & Tarim, S.A. & Modarres, M., 2008. "A multi-objective stochastic programming approach for supply chain design considering risk," International Journal of Production Economics, Elsevier, vol. 116(1), pages 129-138, November.
    5. Manaugh, Kevin & Badami, Madhav G. & El-Geneidy, Ahmed M., 2015. "Integrating social equity into urban transportation planning: A critical evaluation of equity objectives and measures in transportation plans in North America," Transport Policy, Elsevier, vol. 37(C), pages 167-176.
    6. Klibi, Walid & Martel, Alain, 2012. "Modeling approaches for the design of resilient supply networks under disruptions," International Journal of Production Economics, Elsevier, vol. 135(2), pages 882-898.
    7. Alam, Shahriar Tanvir & Ahmed, Sayem & Ali, Syed Mithun & Sarker, Sudipa & Kabir, Golam & ul-Islam, Asif, 2021. "Challenges to COVID-19 vaccine supply chain: Implications for sustainable development goals," International Journal of Production Economics, Elsevier, vol. 239(C).
    8. Amiri-Aref, Mehdi & Farahani, Reza Zanjirani & Hewitt, Mike & Klibi, Walid, 2019. "Equitable location of facilities in a region with probabilistic barriers to travel," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 66-85.
    9. Ayman Reda, 2014. "Weber and Baqir as-Sadr: The Paradox of Economic Development in Islamic Societies," American Journal of Economics and Sociology, Wiley Blackwell, vol. 73(1), pages 151-177, January.
    10. Janjevic, Milena & Merchán, Daniel & Winkenbach, Matthias, 2021. "Designing multi-tier, multi-service-level, and multi-modal last-mile distribution networks for omni-channel operations," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1059-1077.
    11. Mollanejad, Mostafa & Zhang, Lei, 2014. "Incorporating spatial equity into interurban road network design," Journal of Transport Geography, Elsevier, vol. 39(C), pages 156-164.
    12. Liu, Qiyang & Lucas, Karen & Marsden, Greg & Liu, Yang, 2019. "Egalitarianism and public perception of social inequities: A case study of Beijing congestion charge," Transport Policy, Elsevier, vol. 74(C), pages 47-62.
    13. Ben Mohamed, Imen & Klibi, Walid & Vanderbeck, François, 2020. "Designing a two-echelon distribution network under demand uncertainty," European Journal of Operational Research, Elsevier, vol. 280(1), pages 102-123.
    14. Klibi, Walid & Martel, Alain, 2012. "Scenario-based Supply Chain Network risk modeling," European Journal of Operational Research, Elsevier, vol. 223(3), pages 644-658.
    15. Zhu, Stuart X. & Ursavas, Evrim, 2018. "Design and analysis of a satellite network with direct delivery in the pharmaceutical industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 190-207.
    16. Burns, Danny, 2018. "Deepening and scaling participatory research with the poorest and most marginalised," European Journal of Operational Research, Elsevier, vol. 268(3), pages 865-874.
    17. Tinglong Dai & Soo-Haeng Cho & Fuqiang Zhang, 2016. "Contracting for On-Time Delivery in the U.S. Influenza Vaccine Supply Chain," Manufacturing & Service Operations Management, INFORMS, vol. 18(3), pages 332-346, July.
    18. Ivanov, Dmitry & Dolgui, Alexandre, 2021. "OR-methods for coping with the ripple effect in supply chains during COVID-19 pandemic: Managerial insights and research implications," International Journal of Production Economics, Elsevier, vol. 232(C).
    19. Rafael H. M. Pereira & Tim Schwanen & David Banister, 2017. "Distributive justice and equity in transportation," Transport Reviews, Taylor & Francis Journals, vol. 37(2), pages 170-191, March.
    20. Johnson, Michael P. & Midgley, Gerald & Chichirau, George, 2018. "Emerging trends and new frontiers in community operational research," European Journal of Operational Research, Elsevier, vol. 268(3), pages 1178-1191.
    21. Gholami-Zanjani, Seyed Mohammad & Klibi, Walid & Jabalameli, Mohammad Saeed & Pishvaee, Mir Saman, 2021. "The design of resilient food supply chain networks prone to epidemic disruptions," International Journal of Production Economics, Elsevier, vol. 233(C).
    22. Alexandre Dolgui & Dmitry Ivanov, 2021. "Ripple effect and supply chain disruption management: new trends and research directions," International Journal of Production Research, Taylor & Francis Journals, vol. 59(1), pages 102-109, January.
    23. Klibi, Walid & Martel, Alain & Guitouni, Adel, 2010. "The design of robust value-creating supply chain networks: A critical review," European Journal of Operational Research, Elsevier, vol. 203(2), pages 283-293, June.
    24. Sheng-I Chen & Bryan A. Norman & Jayant Rajgopal & Tina M. Assi & Bruce Y. Lee & Shawn T. Brown, 2014. "A planning model for the WHO-EPI vaccine distribution network in developing countries," IISE Transactions, Taylor & Francis Journals, vol. 46(8), pages 853-865, August.
    25. Burcu Balcik & Ecem Yucesoy & Berna Akca & Sirma Karakaya & Asena A. Gevsek & Hossein Baharmand & Fabio Sgarbossa, 2022. "A mathematical model for equitable in-country COVID-19 vaccine allocation," International Journal of Production Research, Taylor & Francis Journals, vol. 60(24), pages 7502-7526, December.
    26. Melo, M.T. & Nickel, S. & Saldanha-da-Gama, F., 2009. "Facility location and supply chain management - A review," European Journal of Operational Research, Elsevier, vol. 196(2), pages 401-412, July.
    27. Pasha, Obed, 2018. "Social justice implications of municipal transportation apportionments in Massachusetts: A case of disparate impact," Transport Policy, Elsevier, vol. 72(C), pages 109-115.
    28. Ivanov, Dmitry, 2020. "Predicting the impacts of epidemic outbreaks on global supply chains: A simulation-based analysis on the coronavirus outbreak (COVID-19/SARS-CoV-2) case," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    29. Romero, Carlos, 2001. "Extended lexicographic goal programming: a unifying approach," Omega, Elsevier, vol. 29(1), pages 63-71, February.
    30. Enayati, Shakiba & Özaltın, Osman Y., 2020. "Optimal influenza vaccine distribution with equity," European Journal of Operational Research, Elsevier, vol. 283(2), pages 714-725.
    31. Yarmand, Hamed & Ivy, Julie S. & Denton, Brian & Lloyd, Alun L., 2014. "Optimal two-phase vaccine allocation to geographically different regions under uncertainty," European Journal of Operational Research, Elsevier, vol. 233(1), pages 208-219.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seyyed-Mahdi Hosseini-Motlagh & Mohammad Reza Ghatreh Samani & Behnam Karimi, 2023. "Resilient and social health service network design to reduce the effect of COVID-19 outbreak," Annals of Operations Research, Springer, vol. 328(1), pages 903-975, September.
    2. Muckstadt, John A. & Klein, Michael G. & Jackson, Peter L. & Gougelet, Robert M. & Hupert, Nathaniel, 2023. "Efficient and effective large-scale vaccine distribution," International Journal of Production Economics, Elsevier, vol. 262(C).
    3. Erdoğan, Güneş & Yücel, Eda & Kiavash, Parinaz & Salman, F. Sibel, 2024. "Fair and effective vaccine allocation during a pandemic," Socio-Economic Planning Sciences, Elsevier, vol. 93(C).
    4. Xu, Danni & Wang, Fan & Zhuo, Xiaopo & Liu, Yaoqi, 2024. "The performance of government subsidy schemes in a competitive vaccine market considering consumers' free-riding behavior," International Journal of Production Economics, Elsevier, vol. 268(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muckstadt, John A. & Klein, Michael G. & Jackson, Peter L. & Gougelet, Robert M. & Hupert, Nathaniel, 2023. "Efficient and effective large-scale vaccine distribution," International Journal of Production Economics, Elsevier, vol. 262(C).
    2. Jahani, Hamed & Abbasi, Babak & Sheu, Jiuh-Biing & Klibi, Walid, 2024. "Supply chain network design with financial considerations: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 312(3), pages 799-839.
    3. Mohammadi, Mehrdad & Dehghan, Milad & Pirayesh, Amir & Dolgui, Alexandre, 2022. "Bi‐objective optimization of a stochastic resilient vaccine distribution network in the context of the COVID‐19 pandemic," Omega, Elsevier, vol. 113(C).
    4. Wang, Xin & Jiang, Ruiwei & Qi, Mingyao, 2023. "A robust optimization problem for drone-based equitable pandemic vaccine distribution with uncertain supply," Omega, Elsevier, vol. 119(C).
    5. Vahdani, Behnam & Mohammadi, Mehrdad & Thevenin, Simon & Gendreau, Michel & Dolgui, Alexandre & Meyer, Patrick, 2023. "Fair-split distribution of multi-dose vaccines with prioritized age groups and dynamic demand: The case study of COVID-19," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1249-1272.
    6. Choudhury, Nishat Alam & Ramkumar, M. & Schoenherr, Tobias & Singh, Shalabh, 2023. "The role of operations and supply chain management during epidemics and pandemics: Potential and future research opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    7. Sengul Orgut, Irem & Freeman, Nickolas & Lewis, Dwight & Parton, Jason, 2023. "Equitable and effective vaccine access considering vaccine hesitancy and capacity constraints," Omega, Elsevier, vol. 120(C).
    8. Hu, Hui & Xu, Jiajun & Liu, Mengqi & Lim, Ming K., 2023. "Vaccine supply chain management: An intelligent system utilizing blockchain, IoT and machine learning," Journal of Business Research, Elsevier, vol. 156(C).
    9. Aldrighetti, Riccardo & Battini, Daria & Ivanov, Dmitry, 2023. "Efficient resilience portfolio design in the supply chain with consideration of preparedness and recovery investments," Omega, Elsevier, vol. 117(C).
    10. Dmitry Ivanov & Alexandre Dolgui & Boris Sokolov & Marina Ivanova, 2017. "Literature review on disruption recovery in the supply chain," International Journal of Production Research, Taylor & Francis Journals, vol. 55(20), pages 6158-6174, October.
    11. Hosseini-Motlagh, Seyyed-Mahdi & Samani, Mohammad Reza Ghatreh & Homaei, Shamim, 2023. "Design of control strategies to help prevent the spread of COVID-19 pandemic," European Journal of Operational Research, Elsevier, vol. 304(1), pages 219-238.
    12. Aldrighetti, Riccardo & Battini, Daria & Ivanov, Dmitry & Zennaro, Ilenia, 2021. "Costs of resilience and disruptions in supply chain network design models: A review and future research directions," International Journal of Production Economics, Elsevier, vol. 235(C).
    13. Longinidis, Pantelis & Georgiadis, Michael C., 2014. "Integration of sale and leaseback in the optimal design of supply chain networks," Omega, Elsevier, vol. 47(C), pages 73-89.
    14. Roba W. Salem & Mohamed Haouari, 2017. "A simulation-optimisation approach for supply chain network design under supply and demand uncertainties," International Journal of Production Research, Taylor & Francis Journals, vol. 55(7), pages 1845-1861, April.
    15. Gilani, Hani & Sahebi, Hadi, 2022. "A data-driven robust optimization model by cutting hyperplanes on vaccine access uncertainty in COVID-19 vaccine supply chain," Omega, Elsevier, vol. 110(C).
    16. Blossey, Gregor & Hahn, Gerd J. & Koberstein, Achim, 2022. "Planning pharmaceutical manufacturing networks in the light of uncertain production approval times," International Journal of Production Economics, Elsevier, vol. 244(C).
    17. Yanyan Yang & Shenle Pan & Eric Ballot, 2017. "Mitigating supply chain disruptions through interconnected logistics services in the Physical Internet," International Journal of Production Research, Taylor & Francis Journals, vol. 55(14), pages 3970-3983, July.
    18. Juliano Marçal Lopes & Coralys Colon Morales & Michelle Alvarado & Vidal Augusto Z. C. Melo & Leonardo Batista Paiva & Eduardo Mario Dias & Panos M. Pardalos, 2022. "Optimization methods for large-scale vaccine supply chains: a rapid review," Annals of Operations Research, Springer, vol. 316(1), pages 699-721, September.
    19. Lin, Qi & Zhao, Qiuhong & Lev, Benjamin, 2022. "Influenza vaccine supply chain coordination under uncertain supply and demand," European Journal of Operational Research, Elsevier, vol. 297(3), pages 930-948.
    20. Sahling, Florian & Kayser, Ariane, 2016. "Strategic supply network planning with vendor selection under consideration of risk and demand uncertainty," Omega, Elsevier, vol. 59(PB), pages 201-214.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:250:y:2022:i:c:s0925527322002663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.