IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v144y2013i1p90-104.html
   My bibliography  Save this article

Reducing sampling costs in multivariate SPC with a double-dimension T2 control chart

Author

Listed:
  • Epprecht, Eugenio K.
  • Aparisi, Francisco
  • Ruiz, Omar
  • Veiga, Álvaro

Abstract

In some real situations there is the need of controlling p variables of a multivariate process, where p1 out of these p variables are easy and inexpensive to monitor, while the p2=p–p1 remaining variables are difficult and/or expensive to measure. However, this set of p2 variables is important to quickly detect the process shifts. This paper develops a control chart based on the T2 statistic where normally only the set of p1 variables is monitored, and only when the T2 value falls in a warning area the rest of variables (p2) are measured and combined with the sample values from the p1 variables, in order to obtain a new T2 statistic. This new chart is the double dimension T2 (DDT2) control chart. The ARL of the DDT2 chart is obtained and the chart's parameters are optimized using genetic algorithms with the aim of maximizing the performance in detecting a given process shift. The optimized DDT2 chart is compared against the standard T2 chart when all the variables are monitored. The results show that the DDT2 clearly outperforms T2 chart in terms of cost, and in some cases even detects process shifts faster than the latter. In addition, friendly software has been developed with the objective of promoting the real application of this new control chart.

Suggested Citation

  • Epprecht, Eugenio K. & Aparisi, Francisco & Ruiz, Omar & Veiga, Álvaro, 2013. "Reducing sampling costs in multivariate SPC with a double-dimension T2 control chart," International Journal of Production Economics, Elsevier, vol. 144(1), pages 90-104.
  • Handle: RePEc:eee:proeco:v:144:y:2013:i:1:p:90-104
    DOI: 10.1016/j.ijpe.2013.01.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527313000406
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2013.01.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bersimis, Sotiris & Psarakis, Stelios & Panaretos, John, 2006. "Multivariate Statistical Process Control Charts: An Overview," MPRA Paper 6399, University Library of Munich, Germany.
    2. Aurelia De Araujo Rodrigues & Eugenio Kahn Epprecht & Maysa Sacramento De Magalhaes, 2011. "Double-sampling control charts for attributes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(1), pages 87-112.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lim, S.L. & Khoo, Michael B.C. & Teoh, W.L. & Xie, M., 2015. "Optimal designs of the variable sample size and sampling interval X¯ chart when process parameters are estimated," International Journal of Production Economics, Elsevier, vol. 166(C), pages 20-35.
    2. Ho, Linda Lee & Aparisi, Francisco, 2016. "ATTRIVAR: Optimized control charts to monitor process mean with lower operational cost," International Journal of Production Economics, Elsevier, vol. 182(C), pages 472-483.
    3. Tomohiro, Ryosuke & Arizono, Ikuo & Takemoto, Yasuhiko, 2020. "Economic design of double sampling Cpm control chart for monitoring process capability," International Journal of Production Economics, Elsevier, vol. 221(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Linus Schiöler & Marianne Fris�n, 2012. "Multivariate outbreak detection," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(2), pages 223-242, April.
    2. Molly C. Klanderman & Kathryn B. Newhart & Tzahi Y. Cath & Amanda S. Hering, 2020. "Fault isolation for a complex decentralized waste water treatment facility," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(4), pages 931-951, August.
    3. Aamir Saghir & Zhengyan Lin, 2014. "Control chart for monitoring multivariate COM-Poisson attributes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(1), pages 200-214, January.
    4. Öhman, Mikael & Finne, Max & Holmström, Jan, 2015. "Measuring service outcomes for adaptive preventive maintenance," International Journal of Production Economics, Elsevier, vol. 170(PB), pages 457-467.
    5. Bersimis, Sotiris & Koutras, Markos V. & Maravelakis, Petros E., 2014. "A compound control chart for monitoring and controlling high quality processes," European Journal of Operational Research, Elsevier, vol. 233(3), pages 595-603.
    6. Wen-An Yang, 2016. "Simultaneous monitoring of mean vector and covariance matrix shifts in bivariate manufacturing processes using hybrid ensemble learning-based model," Journal of Intelligent Manufacturing, Springer, vol. 27(4), pages 845-874, August.
    7. Pedro Veiga & Luis Mendes & Luis Lourenço, 2016. "A retrospective view of statistical quality control research and identification of emerging trends: a bibliometric analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 50(2), pages 673-692, March.
    8. Messaoud, Amor & Weihs, Claus & Hering, Franz, 2008. "Detection of chatter vibration in a drilling process using multivariate control charts," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3208-3219, February.
    9. Wenjuan Liang & Xiaolong Pu & Dongdong Xiang, 2017. "A distribution-free multivariate CUSUM control chart using dynamic control limits," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(11), pages 2075-2093, August.
    10. Lee J. Wells & Romina Dastoorian & Jaime A. Camelio, 2021. "A novel NURBS surface approach to statistically monitor manufacturing processes with point cloud data," Journal of Intelligent Manufacturing, Springer, vol. 32(2), pages 329-345, February.
    11. Bersimis, Sotiris & Panaretos, John & Psarakis, Stelios, 2005. "Multivariate Statistical Process Control Charts and the Problem of Interpretation: A Short Overview and Some Applications in Industry," MPRA Paper 6397, University Library of Munich, Germany.
    12. Nishimura, Kazuya & Matsuura, Shun & Suzuki, Hideo, 2015. "Multivariate EWMA control chart based on a variable selection using AIC for multivariate statistical process monitoring," Statistics & Probability Letters, Elsevier, vol. 104(C), pages 7-13.
    13. Marianne Frisen & Eva Andersson & Linus Schioler, 2010. "Evaluation of multivariate surveillance," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(12), pages 2089-2100.
    14. Athanasios C. Rakitzis & Demetrios L. Antzoulakos, 2011. "Chi-square Control Charts with Runs Rules," Methodology and Computing in Applied Probability, Springer, vol. 13(4), pages 657-669, December.
    15. Frisén, Marianne & Andersson, Eva & Schiöler, Linus, 2009. "Sufficient reduction in multivariate surveillance," Research Reports 2009:2, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    16. Bei Wang & Xuefeng Yan, 2019. "Real-time monitoring of chemical processes based on variation information of principal component analysis model," Journal of Intelligent Manufacturing, Springer, vol. 30(2), pages 795-808, February.
    17. Sotirios Bersimis & Stavros Degiannakis & Dimitrios Georgakellos, 2017. "Real-time monitoring of carbon monoxide using value-at-risk measure and control charting," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(1), pages 89-108, January.
    18. Marianne Frisén, 2014. "Spatial outbreak detection based on inference principles for multivariate surveillance," IISE Transactions, Taylor & Francis Journals, vol. 46(8), pages 759-769, August.
    19. Sotiris Bersimis & Kostas Triantafyllopoulos, 2020. "Dynamic Non-parametric Monitoring of Air-Pollution," Methodology and Computing in Applied Probability, Springer, vol. 22(4), pages 1457-1479, December.
    20. Jing-Er Chiu & Tsen-I Kuo, 2010. "Control charts for fraction nonconforming in a bivariate binomial process," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(10), pages 1717-1728.

    More about this item

    Keywords

    Double sampling; T2 control chart; Cost sampling;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:144:y:2013:i:1:p:90-104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.