IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v137y2012i1p1-10.html
   My bibliography  Save this article

Scheduling jobs on identical parallel machines with unequal future ready time and sequence dependent setup: An experimental study

Author

Listed:
  • Xi, Yue
  • Jang, Jaejin

Abstract

This paper studies the performances of Apparent Tardiness Cost based (ATC-based) dispatching rules in minimizing the total weighted tardiness on identical parallel machines with unequal future ready time and sequence dependent setup.

Suggested Citation

  • Xi, Yue & Jang, Jaejin, 2012. "Scheduling jobs on identical parallel machines with unequal future ready time and sequence dependent setup: An experimental study," International Journal of Production Economics, Elsevier, vol. 137(1), pages 1-10.
  • Handle: RePEc:eee:proeco:v:137:y:2012:i:1:p:1-10
    DOI: 10.1016/j.ijpe.2012.01.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S092552731200028X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2012.01.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ari P. J. Vepsalainen & Thomas E. Morton, 1987. "Priority Rules for Job Shops with Weighted Tardiness Costs," Management Science, INFORMS, vol. 33(8), pages 1035-1047, August.
    2. Zhi‐Long Chen & Warren B. Powell, 2003. "Exact algorithms for scheduling multiple families of jobs on parallel machines," Naval Research Logistics (NRL), John Wiley & Sons, vol. 50(7), pages 823-840, October.
    3. Weng, Michael X. & Lu, John & Ren, Haiying, 2001. "Unrelated parallel machine scheduling with setup consideration and a total weighted completion time objective," International Journal of Production Economics, Elsevier, vol. 70(3), pages 215-226, April.
    4. Lee, Young Hoon & Pinedo, Michael, 1997. "Scheduling jobs on parallel machines with sequence-dependent setup times," European Journal of Operational Research, Elsevier, vol. 100(3), pages 464-474, August.
    5. Allahverdi, Ali & Gupta, Jatinder N. D. & Aldowaisan, Tariq, 1999. "A review of scheduling research involving setup considerations," Omega, Elsevier, vol. 27(2), pages 219-239, April.
    6. Anglani, Alfredo & Grieco, Antonio & Guerriero, Emanuela & Musmanno, Roberto, 2005. "Robust scheduling of parallel machines with sequence-dependent set-up costs," European Journal of Operational Research, Elsevier, vol. 161(3), pages 704-720, March.
    7. Allahverdi, Ali & Ng, C.T. & Cheng, T.C.E. & Kovalyov, Mikhail Y., 2008. "A survey of scheduling problems with setup times or costs," European Journal of Operational Research, Elsevier, vol. 187(3), pages 985-1032, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Allahverdi, Ali, 2015. "The third comprehensive survey on scheduling problems with setup times/costs," European Journal of Operational Research, Elsevier, vol. 246(2), pages 345-378.
    2. Sun, Lin-Hui & Sun, Lin-Yan & Wang, Ming-Zheng & Wang, Ji-Bo, 2012. "Flow shop makespan minimization scheduling with deteriorating jobs under dominating machines," International Journal of Production Economics, Elsevier, vol. 138(1), pages 195-200.
    3. Anzanello, Michel J. & Fogliatto, Flavio S. & Santos, Luana, 2014. "Learning dependent job scheduling in mass customized scenarios considering ergonomic factors," International Journal of Production Economics, Elsevier, vol. 154(C), pages 136-145.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rauchecker, Gerhard & Schryen, Guido, 2019. "An exact branch-and-price algorithm for scheduling rescue units during disaster response," European Journal of Operational Research, Elsevier, vol. 272(1), pages 352-363.
    2. Mujawar, Sachin & Huang, Simin & Nagi, Rakesh, 2012. "Scheduling to minimize stringer utilization for continuous annealing operations," Omega, Elsevier, vol. 40(4), pages 437-444.
    3. Yanıkoğlu, İhsan & Yavuz, Tonguc, 2022. "Branch-and-price approach for robust parallel machine scheduling with sequence-dependent setup times," European Journal of Operational Research, Elsevier, vol. 301(3), pages 875-895.
    4. Hongmin Li & Woonghee T. Huh & Matheus C. Sampaio & Naiping Keng, 2021. "Planning Production and Equipment Qualification under High Process Flexibility," Production and Operations Management, Production and Operations Management Society, vol. 30(10), pages 3369-3390, October.
    5. Vallada, Eva & Ruiz, Rubén, 2011. "A genetic algorithm for the unrelated parallel machine scheduling problem with sequence dependent setup times," European Journal of Operational Research, Elsevier, vol. 211(3), pages 612-622, June.
    6. Armentano, Vinicius Amaral & de Franca Filho, Moacir Felizardo, 2007. "Minimizing total tardiness in parallel machine scheduling with setup times: An adaptive memory-based GRASP approach," European Journal of Operational Research, Elsevier, vol. 183(1), pages 100-114, November.
    7. Allahverdi, Ali & Ng, C.T. & Cheng, T.C.E. & Kovalyov, Mikhail Y., 2008. "A survey of scheduling problems with setup times or costs," European Journal of Operational Research, Elsevier, vol. 187(3), pages 985-1032, June.
    8. Marko Ɖurasević & Domagoj Jakobović, 2019. "Creating dispatching rules by simple ensemble combination," Journal of Heuristics, Springer, vol. 25(6), pages 959-1013, December.
    9. Byung-Cheon Choi & Myoung-Ju Park, 2015. "A Batch Scheduling Problem with Two Agents," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 32(06), pages 1-19, December.
    10. Omid Shahvari & Rasaratnam Logendran & Madjid Tavana, 2022. "An efficient model-based branch-and-price algorithm for unrelated-parallel machine batching and scheduling problems," Journal of Scheduling, Springer, vol. 25(5), pages 589-621, October.
    11. Alidaee, Bahram & Kochenberger, Gary A. & Amini, Mohammad M., 2001. "Greedy solutions of selection and ordering problems," European Journal of Operational Research, Elsevier, vol. 134(1), pages 203-215, October.
    12. Löhndorf, Nils & Riel, Manuel & Minner, Stefan, 2014. "Simulation optimization for the stochastic economic lot scheduling problem with sequence-dependent setup times," International Journal of Production Economics, Elsevier, vol. 157(C), pages 170-176.
    13. Og[breve]uz, Ceyda & Sibel Salman, F. & Bilgintürk YalçIn, Zehra, 2010. "Order acceptance and scheduling decisions in make-to-order systems," International Journal of Production Economics, Elsevier, vol. 125(1), pages 200-211, May.
    14. Wex, Felix & Schryen, Guido & Feuerriegel, Stefan & Neumann, Dirk, 2014. "Emergency response in natural disaster management: Allocation and scheduling of rescue units," European Journal of Operational Research, Elsevier, vol. 235(3), pages 697-708.
    15. Hinder, Oliver & Mason, Andrew J., 2017. "A novel integer programing formulation for scheduling with family setup times on a single machine to minimize maximum lateness," European Journal of Operational Research, Elsevier, vol. 262(2), pages 411-423.
    16. S-W Lin & K-C Ying, 2008. "A hybrid approach for single-machine tardiness problems with sequence-dependent setup times," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(8), pages 1109-1119, August.
    17. Dirk Briskorn & Konrad Stephan & Nils Boysen, 2022. "Minimizing the makespan on a single machine subject to modular setups," Journal of Scheduling, Springer, vol. 25(1), pages 125-137, February.
    18. Kramer, Arthur & Iori, Manuel & Lacomme, Philippe, 2021. "Mathematical formulations for scheduling jobs on identical parallel machines with family setup times and total weighted completion time minimization," European Journal of Operational Research, Elsevier, vol. 289(3), pages 825-840.
    19. Grundel, Soesja & Çiftçi, Barış & Borm, Peter & Hamers, Herbert, 2013. "Family sequencing and cooperation," European Journal of Operational Research, Elsevier, vol. 226(3), pages 414-424.
    20. Mohammad Reza Hosseinzadeh & Mehdi Heydari & Mohammad Mahdavi Mazdeh, 2022. "Mathematical modeling and two metaheuristic algorithms for integrated process planning and group scheduling with sequence-dependent setup time," Operational Research, Springer, vol. 22(5), pages 5055-5105, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:137:y:2012:i:1:p:1-10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.