IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v129y2011i2p262-276.html
   My bibliography  Save this article

Integration of financial statement analysis in the optimal design of supply chain networks under demand uncertainty

Author

Listed:
  • Longinidis, Pantelis
  • Georgiadis, Michael C.

Abstract

Models that aim to optimize the design of supply chain networks have become a mainstream in the supply chain literature. This paper aims to fill a gap in the literature by introducing a mathematical model that integrates financial considerations with supply chain design decisions under demand uncertainty. The proposed Mixed-Integer Linear Programming (MILP) problem enchases financial statement analysis through financial ratios and demand uncertainty through scenario analysis. The applicability of the model is illustrated by using a case study along with a sensitivity analysis on financial parameters expressing the business environment. The model could be used as an effective and convenient strategic decision tool by supply chain managers.

Suggested Citation

  • Longinidis, Pantelis & Georgiadis, Michael C., 2011. "Integration of financial statement analysis in the optimal design of supply chain networks under demand uncertainty," International Journal of Production Economics, Elsevier, vol. 129(2), pages 262-276, February.
  • Handle: RePEc:eee:proeco:v:129:y:2011:i:2:p:262-276
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925-5273(10)00411-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hammami, Ramzi & Frein, Yannick & Hadj-Alouane, Atidel B., 2008. "Supply chain design in the delocalization context: Relevant features and new modeling tendencies," International Journal of Production Economics, Elsevier, vol. 113(2), pages 641-656, June.
    2. Guillen, Gonzalo & Badell, Mariana & Puigjaner, Luis, 2007. "A holistic framework for short-term supply chain management integrating production and corporate financial planning," International Journal of Production Economics, Elsevier, vol. 106(1), pages 288-306, March.
    3. Cowen, Scott S. & Hoffer, Jeffrey A., 1982. "Usefulness of financial ratios in a single industry," Journal of Business Research, Elsevier, vol. 10(1), pages 103-118, March.
    4. Azaron, A. & Brown, K.N. & Tarim, S.A. & Modarres, M., 2008. "A multi-objective stochastic programming approach for supply chain design considering risk," International Journal of Production Economics, Elsevier, vol. 116(1), pages 129-138, November.
    5. Vidal, Carlos J. & Goetschalckx, Marc, 1997. "Strategic production-distribution models: A critical review with emphasis on global supply chain models," European Journal of Operational Research, Elsevier, vol. 98(1), pages 1-18, April.
    6. Tsiakis, Panagiotis & Papageorgiou, Lazaros G., 2008. "Optimal production allocation and distribution supply chain networks," International Journal of Production Economics, Elsevier, vol. 111(2), pages 468-483, February.
    7. Hammami, Ramzi & Frein, Yannick & Hadj-Alouane, Atidel B., 2009. "A strategic-tactical model for the supply chain design in the delocalization context: Mathematical formulation and a case study," International Journal of Production Economics, Elsevier, vol. 122(1), pages 351-365, November.
    8. Ronald H. Ballou, 2001. "Unresolved Issues in Supply Chain Network Design," Information Systems Frontiers, Springer, vol. 3(4), pages 417-426, December.
    9. Thanh, Phuong Nga & Bostel, Nathalie & Péton, Olivier, 2008. "A dynamic model for facility location in the design of complex supply chains," International Journal of Production Economics, Elsevier, vol. 113(2), pages 678-693, June.
    10. Klibi, Walid & Martel, Alain & Guitouni, Adel, 2010. "The design of robust value-creating supply chain networks: A critical review," European Journal of Operational Research, Elsevier, vol. 203(2), pages 283-293, June.
    11. Sodhi, ManMohan S. & Tang, Christopher S., 2009. "Modeling supply-chain planning under demand uncertainty using stochastic programming: A survey motivated by asset-liability management," International Journal of Production Economics, Elsevier, vol. 121(2), pages 728-738, October.
    12. Rushinek, Avi & Rushinek, Sara F., 1987. "Using financial ratios to predict insolvency," Journal of Business Research, Elsevier, vol. 15(1), pages 93-100, February.
    13. Melo, M.T. & Nickel, S. & Saldanha-da-Gama, F., 2009. "Facility location and supply chain management - A review," European Journal of Operational Research, Elsevier, vol. 196(2), pages 401-412, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jahani, Hamed & Abbasi, Babak & Sheu, Jiuh-Biing & Klibi, Walid, 2024. "Supply chain network design with financial considerations: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 312(3), pages 799-839.
    2. Longinidis, Pantelis & Georgiadis, Michael C., 2014. "Integration of sale and leaseback in the optimal design of supply chain networks," Omega, Elsevier, vol. 47(C), pages 73-89.
    3. Sabet, Ehsan & Yazdani, Baback & Kian, Ramez & Galanakis, Kostas, 2020. "A strategic and global manufacturing capacity management optimisation model: A Scenario-based multi-stage stochastic programming approach," Omega, Elsevier, vol. 93(C).
    4. Blossey, Gregor & Hahn, Gerd J. & Koberstein, Achim, 2022. "Planning pharmaceutical manufacturing networks in the light of uncertain production approval times," International Journal of Production Economics, Elsevier, vol. 244(C).
    5. Sahling, Florian & Kayser, Ariane, 2016. "Strategic supply network planning with vendor selection under consideration of risk and demand uncertainty," Omega, Elsevier, vol. 59(PB), pages 201-214.
    6. Zhang, Abraham & Luo, Hao & Huang, George Q., 2013. "A bi-objective model for supply chain design of dispersed manufacturing in China," International Journal of Production Economics, Elsevier, vol. 146(1), pages 48-58.
    7. Melo, M.T. & Nickel, S. & Saldanha-da-Gama, F., 2012. "A tabu search heuristic for redesigning a multi-echelon supply chain network over a planning horizon," International Journal of Production Economics, Elsevier, vol. 136(1), pages 218-230.
    8. Gebennini, Elisa & Gamberini, Rita & Manzini, Riccardo, 2009. "An integrated production-distribution model for the dynamic location and allocation problem with safety stock optimization," International Journal of Production Economics, Elsevier, vol. 122(1), pages 286-304, November.
    9. Hasani, Aliakbar & Khosrojerdi, Amirhossein, 2016. "Robust global supply chain network design under disruption and uncertainty considering resilience strategies: A parallel memetic algorithm for a real-life case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 87(C), pages 20-52.
    10. Martins, C. L. & Melo, Teresa & Pato, Margarida Vaz, 2016. "Redesigning a food bank supply chain network, Part I: Background and mathematical formulation," Technical Reports on Logistics of the Saarland Business School 10, Saarland University of Applied Sciences (htw saar), Saarland Business School.
    11. Roba W. Salem & Mohamed Haouari, 2017. "A simulation-optimisation approach for supply chain network design under supply and demand uncertainties," International Journal of Production Research, Taylor & Francis Journals, vol. 55(7), pages 1845-1861, April.
    12. Farahani, Reza Zanjirani & Rezapour, Shabnam & Drezner, Tammy & Fallah, Samira, 2014. "Competitive supply chain network design: An overview of classifications, models, solution techniques and applications," Omega, Elsevier, vol. 45(C), pages 92-118.
    13. Fattahi, Mohammad & Govindan, Kannan & Keyvanshokooh, Esmaeil, 2017. "Responsive and resilient supply chain network design under operational and disruption risks with delivery lead-time sensitive customers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 101(C), pages 176-200.
    14. Shiva Zokaee & Armin Jabbarzadeh & Behnam Fahimnia & Seyed Jafar Sadjadi, 2017. "Robust supply chain network design: an optimization model with real world application," Annals of Operations Research, Springer, vol. 257(1), pages 15-44, October.
    15. Brandenburg, Marcus, 2017. "A hybrid approach to configure eco-efficient supply chains under consideration of performance and risk aspects," Omega, Elsevier, vol. 70(C), pages 58-76.
    16. Cortinhal, M. J. & Lopes, M. J. & Melo, M. T., 2014. "Redesigning a three-echelon logistics network over multiple time periods with transportation mode selection and outsourcing opportunities," Technical Reports on Logistics of the Saarland Business School 7, Saarland University of Applied Sciences (htw saar), Saarland Business School.
    17. Moritz Julius Ziegler & Kilian Seifried & Philipp Kuske & Moritz Fleischmann, 2019. "TRUMPF Uses a Mixed Integer Model as Decision Support for Strategic Production Network Design," Interfaces, INFORMS, vol. 49(3), pages 213-226, May.
    18. Tang, Christopher S. & Davarzani, Hoda & Sarkis, Joseph, 2015. "Quantitative models for managing supply chain risks: A reviewAuthor-Name: Fahimnia, Behnam," European Journal of Operational Research, Elsevier, vol. 247(1), pages 1-15.
    19. Linda Zhang & Carman Lee & Shuzhu Zhang, 2016. "An integrated model for strategic supply chain design: Formulation and ABC-based solution approach," Post-Print hal-01744868, HAL.
    20. Dastgoshade, Sohaib & Shafiee, Mohammad & Klibi, Walid & Shishebori, Davood, 2022. "Social equity-based distribution networks design for the COVID-19 vaccine," International Journal of Production Economics, Elsevier, vol. 250(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:129:y:2011:i:2:p:262-276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.