IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v119y2009i2p259-270.html
   My bibliography  Save this article

Supporting the module sequencing decision in the ERP implementation process--An application of the ANP method

Author

Listed:
  • Hallikainen, Petri
  • Kivijärvi, Hannu
  • Tuominen, Markku

Abstract

The paper addresses the alignment between business processes and information technology in enterprise resource planning (ERP) implementation. More specifically, we concentrate on one of the key decisions at the tactical alignment level: the decision on the implementation sequence of the ERP modules. Since the module sequencing problem involves a myriad of organizational and technical issues, connected to each other in networked manner, the analytic network process (ANP) methodology is applied. As a result of the study, we present first a general level conceptual framework to sequence ERP module implementations and expand the model to a more detailed level in a case study. The priorities for the implementation sequence of the ERP modules are determined in the case study.

Suggested Citation

  • Hallikainen, Petri & Kivijärvi, Hannu & Tuominen, Markku, 2009. "Supporting the module sequencing decision in the ERP implementation process--An application of the ANP method," International Journal of Production Economics, Elsevier, vol. 119(2), pages 259-270, June.
  • Handle: RePEc:eee:proeco:v:119:y:2009:i:2:p:259-270
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925-5273(09)00073-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James S. Dyer, 1990. "Remarks on the Analytic Hierarchy Process," Management Science, INFORMS, vol. 36(3), pages 249-258, March.
    2. Joseph Sarkis & R.P. Sundarraj, 2003. "Evaluating Componentized Enterprise Information Technologies: A Multiattribute Modeling Approach," Information Systems Frontiers, Springer, vol. 5(3), pages 303-319, September.
    3. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    4. Kivijarvi, Hannu & Tuominen, Markku, 1991. "Logistics management: a method for evaluation of production-distribution investments," International Journal of Production Economics, Elsevier, vol. 24(1-2), pages 115-128, November.
    5. Gerald F. Smith, 1988. "Towards a Heuristic Theory of Problem Structuring," Management Science, INFORMS, vol. 34(12), pages 1489-1506, December.
    6. Helmut Klaus & Michael Rosemann & Guy G. Gable, 2000. "What is ERP?," Information Systems Frontiers, Springer, vol. 2(2), pages 141-162, August.
    7. James S. Dyer, 1990. "A Clarification of "Remarks on the Analytic Hierarchy Process"," Management Science, INFORMS, vol. 36(3), pages 274-275, March.
    8. Joaquín Pérez & José Jimeno & Ethel Mokotoff, 2006. "Another potential shortcoming of AHP," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 14(1), pages 99-111, June.
    9. Al-Mashari, Majed & Al-Mudimigh, Abdullah & Zairi, Mohamed, 2003. "Enterprise resource planning: A taxonomy of critical factors," European Journal of Operational Research, Elsevier, vol. 146(2), pages 352-364, April.
    10. Wanda J. Orlikowski, 1992. "The Duality of Technology: Rethinking the Concept of Technology in Organizations," Organization Science, INFORMS, vol. 3(3), pages 398-427, August.
    11. Judy E. Scott & Iris Vessey, 2000. "Implementing Enterprise Resource Planning Systems: The Role of Learning from Failure," Information Systems Frontiers, Springer, vol. 2(2), pages 213-232, August.
    12. Mabert, Vincent A. & Soni, Ashok & Venkataramanan, M. A., 2003. "Enterprise resource planning: Managing the implementation process," European Journal of Operational Research, Elsevier, vol. 146(2), pages 302-314, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Silvia ISTRATE & Valerica NESTIAN & Maria NEAGU, 2018. "A Company Improvement Analysis using the AHP and the ANP Methods," Economics and Applied Informatics, "Dunarea de Jos" University of Galati, Faculty of Economics and Business Administration, issue 2, pages 48-59.
    2. Valerica NESTIAN & Silvia ISTRATE & Maria NEAGU, 2019. "A Company Improvement Analysis using the AHP/ANP Methods and the Modern Technology," Economics and Applied Informatics, "Dunarea de Jos" University of Galati, Faculty of Economics and Business Administration, issue 1, pages 62-77.
    3. Kheybari, Siamak & Rezaie, Fariba Mahdi & Farazmand, Hadis, 2020. "Analytic network process: An overview of applications," Applied Mathematics and Computation, Elsevier, vol. 367(C).
    4. Ayağ, Zeki & Gürcan Özdemir, Rifat, 2012. "Evaluating machine tool alternatives through modified TOPSIS and alpha-cut based fuzzy ANP," International Journal of Production Economics, Elsevier, vol. 140(2), pages 630-636.
    5. Orji, Ifeyinwa Juliet & Kusi-Sarpong, Simonov & Huang, Shuangfa & Vazquez-Brust, Diego, 2020. "Evaluating the factors that influence blockchain adoption in the freight logistics industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    6. Wu, Cheng-Shiung & Lin, Chin-Tsai & Lee, Chuan, 2010. "Optimal marketing strategy: A decision-making with ANP and TOPSIS," International Journal of Production Economics, Elsevier, vol. 127(1), pages 190-196, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessio Ishizaka & Sajid Siraj, 2020. "Interactive consistency correction in the analytic hierarchy process to preserve ranks," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(2), pages 443-464, December.
    2. Madjid Tavana & Mariya Sodenkamp & Leena Suhl, 2010. "A soft multi-criteria decision analysis model with application to the European Union enlargement," Annals of Operations Research, Springer, vol. 181(1), pages 393-421, December.
    3. Hoene, Andreas & Jawale, Mandar & Neukirchen, Thomas & Bednorz, Nicole & Schulz, Holger & Hauser, Simon, 2019. "Bewertung von Technologielösungen für Automatisierung und Ergonomieunterstützung der Intralogistik," ild Schriftenreihe 64, FOM Hochschule für Oekonomie & Management, Institut für Logistik- & Dienstleistungsmanagement (ild).
    4. Kevin Kam Fung Yuen, 2022. "Decision models for information systems planning using primitive cognitive network process: comparisons with analytic hierarchy process," Operational Research, Springer, vol. 22(3), pages 1759-1785, July.
    5. Zachary F. Lansdowne, 1996. "Ordinal ranking methods for multicriterion decision making," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(5), pages 613-627, August.
    6. Devesh Kumar & Gunjan Soni & Rohit Joshi & Vipul Jain & Amrik Sohal, 2022. "Modelling supply chain viability during COVID-19 disruption: A case of an Indian automobile manufacturing supply chain," Operations Management Research, Springer, vol. 15(3), pages 1224-1240, December.
    7. Ozan Çakır & İbrahim Gürler & Bora Gündüzyeli, 2022. "Analysis of a Non-Discriminating Criterion in Simple Additive Weighting Deep Hierarchy," Mathematics, MDPI, vol. 10(17), pages 1-22, September.
    8. Jiří Mazurek, 2018. "Some notes on the properties of inconsistency indices in pairwise comparisons," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 28(1), pages 27-42.
    9. Cinelli, Marco & Kadziński, Miłosz & Gonzalez, Michael & Słowiński, Roman, 2020. "How to support the application of multiple criteria decision analysis? Let us start with a comprehensive taxonomy," Omega, Elsevier, vol. 96(C).
    10. A Ishizaka & D Balkenborg & T Kaplan, 2011. "Influence of aggregation and measurement scale on ranking a compromise alternative in AHP," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(4), pages 700-710, April.
    11. Tomashevskii, I.L., 2015. "Eigenvector ranking method as a measuring tool: Formulas for errors," European Journal of Operational Research, Elsevier, vol. 240(3), pages 774-780.
    12. Fujun Hou, 2016. "Market Competitiveness Evaluation of Mechanical Equipment with a Pairwise Comparisons Hierarchical Model," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-18, January.
    13. Ardalan Bafahm & Minghe Sun, 2019. "Some Conflicting Results in the Analytic Hierarchy Process," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(02), pages 465-486, March.
    14. Majumdar, Abhijit & Tiwari, Manoj Kumar & Agarwal, Aastha & Prajapat, Kanika, 2021. "A new case of rank reversal in analytic hierarchy process due to aggregation of cost and benefit criteria," Operations Research Perspectives, Elsevier, vol. 8(C).
    15. Liu, Qizhi, 2022. "Identifying and correcting the defects of the Saaty analytic hierarchy/network process: A comparative study of the Saaty analytic hierarchy/network process and the Markov chain-based analytic network ," Operations Research Perspectives, Elsevier, vol. 9(C).
    16. Bentes, Alexandre Veronese & Carneiro, Jorge & da Silva, Jorge Ferreira & Kimura, Herbert, 2012. "Multidimensional assessment of organizational performance: Integrating BSC and AHP," Journal of Business Research, Elsevier, vol. 65(12), pages 1790-1799.
    17. Benedetto Barabino & Nicola Aldo Cabras & Claudio Conversano & Alessandro Olivo, 2020. "An Integrated Approach to Select Key Quality Indicators in Transit Services," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 149(3), pages 1045-1080, June.
    18. Zhü, Kèyù, 2014. "Fuzzy analytic hierarchy process: Fallacy of the popular methods," European Journal of Operational Research, Elsevier, vol. 236(1), pages 209-217.
    19. Qingxian An & Fanyong Meng & Beibei Xiong, 2018. "Interval cross efficiency for fully ranking decision making units using DEA/AHP approach," Annals of Operations Research, Springer, vol. 271(2), pages 297-317, December.
    20. Butler, John C. & Dyer, James S. & Jia, Jianmin & Tomak, Kerem, 2008. "Enabling e-transactions with multi-attribute preference models," European Journal of Operational Research, Elsevier, vol. 186(2), pages 748-765, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:119:y:2009:i:2:p:259-270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.