IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v650y2024ics0378437124004795.html
   My bibliography  Save this article

Information theory unification of epidemiological and population dynamics

Author

Listed:
  • Filoche, Baptiste
  • Hohenegger, Stefan
  • Sannino, Francesco

Abstract

We reformulate models in epidemiology and population dynamics in terms of probability distributions. This allows us to construct the Fisher information, which we interpret as the metric of a one-dimensional differentiable manifold. For systems that can be effectively described by a single degree of freedom, we show that their time evolution is fully captured by this metric. In this way, we discover universal features across seemingly very different models. This further motivates a reorganisation of the dynamics around zeroes of the Fisher metric, corresponding to extrema of the probability distribution. Concretely, we propose a simple form of the metric for which we can analytically solve the dynamics of the system that well approximates the time evolution of various established models in epidemiology and population dynamics, thus providing a unifying framework.

Suggested Citation

  • Filoche, Baptiste & Hohenegger, Stefan & Sannino, Francesco, 2024. "Information theory unification of epidemiological and population dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 650(C).
  • Handle: RePEc:eee:phsmap:v:650:y:2024:i:c:s0378437124004795
    DOI: 10.1016/j.physa.2024.129970
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124004795
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.129970?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Burbea, Jacob & Rao, C. Radhakrishna, 1982. "Entropy differential metric, distance and divergence measures in probability spaces: A unified approach," Journal of Multivariate Analysis, Elsevier, vol. 12(4), pages 575-596, December.
    2. Cacciapaglia, Giacomo & Cot, Corentin & de Hoffer, Adele & Hohenegger, Stefan & Sannino, Francesco & Vatani, Shahram, 2022. "Epidemiological theory of virus variants," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Berkane, Maia & Oden, Kevin & Bentler, Peter M., 1997. "Geodesic Estimation in Elliptical Distributions," Journal of Multivariate Analysis, Elsevier, vol. 63(1), pages 35-46, October.
    2. Asok K. Nanda & Shovan Chowdhury, 2021. "Shannon's Entropy and Its Generalisations Towards Statistical Inference in Last Seven Decades," International Statistical Review, International Statistical Institute, vol. 89(1), pages 167-185, April.
    3. A. Micchelli, Charles & Noakes, Lyle, 2005. "Rao distances," Journal of Multivariate Analysis, Elsevier, vol. 92(1), pages 97-115, January.
    4. Guoping Zeng, 2013. "Metric Divergence Measures and Information Value in Credit Scoring," Journal of Mathematics, Hindawi, vol. 2013, pages 1-10, October.
    5. Mengütürk, Levent Ali, 2018. "Gaussian random bridges and a geometric model for information equilibrium," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 465-483.
    6. Shun‐ichi Amari, 2021. "Information Geometry," International Statistical Review, International Statistical Institute, vol. 89(2), pages 250-273, August.
    7. Cui, Guang-Hai & Li, Jun-Li & Dong, Kun-Xiang & Jin, Xing & Yang, Hong-Yong & Wang, Zhen, 2024. "Influence of subsidy policies against insurances on controlling the propagation of epidemic security risks in networks," Applied Mathematics and Computation, Elsevier, vol. 476(C).
    8. Ghosh, Indranil, 2023. "On the issue of convergence of certain divergence measures related to finding most nearly compatible probability distribution under the discrete set-up," Statistics & Probability Letters, Elsevier, vol. 203(C).
    9. García, Gloria & M. Oller, Josep, 2001. "Minimum Riemannian risk equivariant estimator for the univariate normal model," Statistics & Probability Letters, Elsevier, vol. 52(1), pages 109-113, March.
    10. José M. Oller & Albert Satorra & Adolf Tobeña, 2019. "Unveiling pathways for the fissure among secessionists and unionists in Catalonia: identities, family language, and media influence," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-13, December.
    11. Luigi Augugliaro & Angelo M. Mineo & Ernst C. Wit, 2013. "Differential geometric least angle regression: a differential geometric approach to sparse generalized linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 471-498, June.
    12. D. Bernal-Casas & J. M. Oller, 2024. "Variational Information Principles to Unveil Physical Laws," Mathematics, MDPI, vol. 12(24), pages 1-14, December.
    13. Sylvia Gottschalk, 2016. "Entropy and credit risk in highly correlated markets," Papers 1604.07042, arXiv.org.
    14. Abhik Ghosh & Ayanendranath Basu, 2017. "The minimum S-divergence estimator under continuous models: the Basu–Lindsay approach," Statistical Papers, Springer, vol. 58(2), pages 341-372, June.
    15. Remuzgo, Lorena & Trueba, Carmen & Sarabia, José María, 2016. "Evolution of the global inequality in greenhouse gases emissions using multidimensional generalized entropy measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 146-157.
    16. Lovric, Miroslav & Min-Oo, Maung & Ruh, Ernst A., 2000. "Multivariate Normal Distributions Parametrized as a Riemannian Symmetric Space," Journal of Multivariate Analysis, Elsevier, vol. 74(1), pages 36-48, July.
    17. Gottschalk, Sylvia, 2017. "Entropy measure of credit risk in highly correlated markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 478(C), pages 11-19.
    18. Anderson, William & Farazmand, Mohammad, 2024. "Fisher information and shape-morphing modes for solving the Fokker–Planck equation in higher dimensions," Applied Mathematics and Computation, Elsevier, vol. 467(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:650:y:2024:i:c:s0378437124004795. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.