IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v645y2024ics0378437124003406.html
   My bibliography  Save this article

Metaheuristic optimization with dynamic strategy adaptation: An evolutionary game theory approach

Author

Listed:
  • Cuevas, Erik
  • Luque, Alberto
  • Aguirre, Nahum
  • Navarro, Mario A.
  • Rodríguez, Alma

Abstract

Most metaheuristic methods employ a strategy designed to be generical and fixed. As a result, these methods often lack the capability to adaptively modify their performance in response to different scenarios or challenges encountered during the search process. This paper presents a new metaheuristic algorithm designed to dynamically adjust its search strategy throughout the optimization process for increased efficiency. This algorithm is based on Evolutionary Strategies (ES) due to their notable self-adaptive features. To further enhance its efficiency, we have incorporated elements from Evolutionary Game Theory (EGT). This integration ensures a more comprehensive strategy adaptation process, taking into account not only the information from the specific agent but also insights from other population members. Additionally, our approach alters the conventional EGT mechanism by including not just pairwise evaluations but also data from the top-performing individuals in the population, based on their outcomes. This broader adaptation strategy allows for a faster convergence to the most effective dominant strategy. To demonstrate the effectiveness of our method, we compared it against several established metaheuristic algorithms using 28 diverse test functions. Our findings reveal that this approach produces competitive results, delivering higher-quality solutions and faster convergence rates.

Suggested Citation

  • Cuevas, Erik & Luque, Alberto & Aguirre, Nahum & Navarro, Mario A. & Rodríguez, Alma, 2024. "Metaheuristic optimization with dynamic strategy adaptation: An evolutionary game theory approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 645(C).
  • Handle: RePEc:eee:phsmap:v:645:y:2024:i:c:s0378437124003406
    DOI: 10.1016/j.physa.2024.129831
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124003406
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.129831?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fred Glover, 1990. "Tabu Search: A Tutorial," Interfaces, INFORMS, vol. 20(4), pages 74-94, August.
    2. Scatà, Marialisa & Di Stefano, Alessandro & La Corte, Aurelio & Liò, Pietro & Catania, Emanuele & Guardo, Ermanno & Pagano, Salvatore, 2016. "Combining evolutionary game theory and network theory to analyze human cooperation patterns," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 17-24.
    3. Challet, D. & Zhang, Y.-C., 1997. "Emergence of cooperation and organization in an evolutionary game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 246(3), pages 407-418.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yunong & Belmonte, Andrew & Griffin, Christopher, 2021. "Imitation of success leads to cost of living mediated fairness in the Ultimatum Game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    2. Anindya S. Chakrabarti & Diptesh Ghosh, 2019. "Emergence of anti-coordination through reinforcement learning in generalized minority games," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 14(2), pages 225-245, June.
    3. Wawrzyniak, Karol & Wiślicki, Wojciech, 2012. "Mesoscopic approach to minority games in herd regime," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(5), pages 2056-2082.
    4. Wang, Yougui & Stanley, H.E., 2009. "Statistical approach to partial equilibrium analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(7), pages 1173-1180.
    5. A. Corcos & J-P Eckmann & A. Malaspinas & Y. Malevergne & D. Sornette, 2002. "Imitation and contrarian behaviour: hyperbolic bubbles, crashes and chaos," Quantitative Finance, Taylor & Francis Journals, vol. 2(4), pages 264-281.
    6. Thorsten Chmura & Thomas Pitz, 2007. "An Extended Reinforcement Algorithm for Estimation of Human Behaviour in Experimental Congestion Games," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 10(2), pages 1-1.
    7. Naji Massad & Jørgen Vitting Andersen, 2017. "Three different ways synchronization can cause contagion in financial markets," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01673333, HAL.
    8. Karol Wawrzyniak & Wojciech Wi'slicki, 2013. "Grand canonical minority game as a sign predictor," Papers 1309.3399, arXiv.org.
    9. Challet, Damien & Zhang, Yi-Cheng, 1998. "On the minority game: Analytical and numerical studies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 256(3), pages 514-532.
    10. Gu, Gao-Feng & Chen, Wei & Zhou, Wei-Xing, 2008. "Empirical regularities of order placement in the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3173-3182.
    11. Francis Bismans & Olivier Damette, 2012. "La taxe Tobin : une synthèse des travaux basés sur la théorie des jeux et l’économétrie," Working Papers of BETA 2012-09, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    12. Kalinowski, Thomas & Schulz, Hans-Jörg & Briese, Michael, 2000. "Cooperation in the Minority Game with local information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 277(3), pages 502-508.
    13. Chen, Fang & Gou, Chengling & Guo, Xiaoqian & Gao, Jieping, 2008. "Prediction of stock markets by the evolutionary mix-game model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3594-3604.
    14. Xin, C. & Yang, G. & Huang, J.P., 2017. "Ising game: Nonequilibrium steady states of resource-allocation systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 666-673.
    15. J. Doyne Farmer, 2002. "Market force, ecology and evolution," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 11(5), pages 895-953, November.
    16. Roberto Savona & Maxence Soumare & Jørgen Vitting Andersen, 2015. "Financial Symmetry and Moods in the Market," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-21, April.
    17. Linde, Jona & Sonnemans, Joep & Tuinstra, Jan, 2014. "Strategies and evolution in the minority game: A multi-round strategy experiment," Games and Economic Behavior, Elsevier, vol. 86(C), pages 77-95.
    18. H. A. J. Crauwels & C. N. Potts & L. N. Van Wassenhove, 1998. "Local Search Heuristics for the Single Machine Total Weighted Tardiness Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 10(3), pages 341-350, August.
    19. Mello, Bernardo A. & Cajueiro, Daniel O., 2008. "Minority games, diversity, cooperativity and the concept of intelligence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 557-566.
    20. E A Silver, 2004. "An overview of heuristic solution methods," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(9), pages 936-956, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:645:y:2024:i:c:s0378437124003406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.