IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v639y2024ics037843712400205x.html
   My bibliography  Save this article

Enhancing lane changing trajectory prediction on highways: A heuristic attention-based encoder-decoder model

Author

Listed:
  • Xiao, Xue
  • Bo, Peng
  • Chen, Yingda
  • Chen, Yili
  • Li, Keping

Abstract

Accurate prediction of lane changing (LC) trajectories plays a vital role in ensuring safe and efficient traffic flow on highways. This paper proposes a LC trajectory prediction model based on encoder-decoder architecture to address low long-term prediction accuracy problem and to gain insight into the underlying motivations of LC behavior. Three specific enhancements were proposed to improve the performance of encoder-decoder. The first enhancement involves the utilization of Neighborhood Component Analysis (NCA) to identify the most relevant input features from driving environment. The second enhancement involves the introduction of heuristic attention to capture intricate time-dependent and environment-dependent patterns of input data. Finally, a trajectory check module was proposed to supervise and adjust the prediction outputs based on vehicle dynamics constraints. The proposed model was trained and evaluated using the HighD dataset. Experimental results demonstrated that the proposed model outperforms improved encoder-decoder architectures designed by previous studies in terms of prediction accuracy in long-term prediction, which the lateral and longitude MAE were 0.041 m and 1.842 m in 5 s prediction duration, respectively. Additionally, it was observed that preceding vehicles in the current and target lane, and following vehicle in the target lane, exert a significantly influential effect on LC maneuvers, which represents the underlying motivations behind LC behavior. The findings of this study contribute to the advancement of intelligent transportation systems (ITS) and autonomous vehicles (AVs) by providing an effective LC trajectory prediction.

Suggested Citation

  • Xiao, Xue & Bo, Peng & Chen, Yingda & Chen, Yili & Li, Keping, 2024. "Enhancing lane changing trajectory prediction on highways: A heuristic attention-based encoder-decoder model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 639(C).
  • Handle: RePEc:eee:phsmap:v:639:y:2024:i:c:s037843712400205x
    DOI: 10.1016/j.physa.2024.129696
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843712400205X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.129696?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chenxi Ding & Wuhong Wang & Xiao Wang & Martin Baumann, 2013. "A Neural Network Model for Driver’s Lane-Changing Trajectory Prediction in Urban Traffic Flow," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-8, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shang, Xue-Cheng & Li, Xin-Gang & Xie, Dong-Fan & Jia, Bin & Jiang, Rui & Liu, Feng, 2022. "A data-driven two-lane traffic flow model based on cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    2. Zhao, Fangxia & Shang, HuaYan & Cui, JiHui, 2023. "Role of electric vehicle driving behavior on optimal setting of wireless charging lane," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:639:y:2024:i:c:s037843712400205x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.