IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v632y2023ip1s0378437123008580.html
   My bibliography  Save this article

Analysis of potential flow networks: Variations in transport time with discrete, continuous, and selfish operation

Author

Listed:
  • Kurian, Varghese
  • Narasimhan, Sridharakumar

Abstract

In potential flow networks, the equilibrium flow rates are usually not proportional to the demands and flow control elements are required to regulate the flow. The control elements can broadly be classified into two types—discrete and continuous. Discrete control elements can have only two operational states: fully open or fully closed. On the other hand, continuous control elements may be operated in any intermediate position in addition to the fully open and fully closed states. Naturally, with their increased flexibility, continuous control elements can provide better network performance, but to what extent?

Suggested Citation

  • Kurian, Varghese & Narasimhan, Sridharakumar, 2023. "Analysis of potential flow networks: Variations in transport time with discrete, continuous, and selfish operation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
  • Handle: RePEc:eee:phsmap:v:632:y:2023:i:p1:s0378437123008580
    DOI: 10.1016/j.physa.2023.129303
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123008580
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.129303?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shiono, Naoshi & Suzuki, Hisatoshi, 2016. "Optimal pipe-sizing problem of tree-shaped gas distribution networks," European Journal of Operational Research, Elsevier, vol. 252(2), pages 550-560.
    2. Miguel, Antonio F., 2018. "A general model for optimal branching of fluidic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 665-674.
    3. Kou, Jianlong & Chen, Yanyan & Zhou, Xiaoyan & Lu, Hangjun & Wu, Fengmin & Fan, Jintu, 2014. "Optimal structure of tree-like branching networks for fluid flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 527-534.
    4. Daniel J. Case & Yifan Liu & István Z. Kiss & Jean-Régis Angilella & Adilson E. Motter, 2019. "Braess’s paradox and programmable behaviour in microfluidic networks," Nature, Nature, vol. 574(7780), pages 647-652, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Yingzong & Hui, Chi Wai, 2018. "Convexification for natural gas transmission networks optimization," Energy, Elsevier, vol. 158(C), pages 1001-1016.
    2. Shiono, Naoshi & Suzuki, Hisatoshi & Saruwatari, Yasufumi, 2019. "A dynamic programming approach for the pipe network layout problem," European Journal of Operational Research, Elsevier, vol. 277(1), pages 52-61.
    3. Alejandro Martínez-Calvo & Matthew D. Biviano & Anneline H. Christensen & Eleni Katifori & Kaare H. Jensen & Miguel Ruiz-García, 2024. "The fluidic memristor as a collective phenomenon in elastohydrodynamic networks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Ralf Lenz & Kai Helge Becker, 2022. "Optimization of capacity expansion in potential-driven networks including multiple looping: a comparison of modelling approaches," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 179-224, March.
    5. Benjamin Schäfer & Thiemo Pesch & Debsankha Manik & Julian Gollenstede & Guosong Lin & Hans-Peter Beck & Dirk Witthaut & Marc Timme, 2022. "Understanding Braess’ Paradox in power grids," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Wei, Qi & Zhou, Peng & Shi, Xunpeng, 2023. "The congestion cost of pipeline networks under third-party access in China's natural gas market," Energy, Elsevier, vol. 284(C).
    7. Yijiang Li & Santanu S. Dey & Nikolaos V. Sahinidis, 2024. "A reformulation-enumeration MINLP algorithm for gas network design," Journal of Global Optimization, Springer, vol. 90(4), pages 931-963, December.
    8. Martin Robinius & Lars Schewe & Martin Schmidt & Detlef Stolten & Johannes Thürauf & Lara Welder, 2019. "Robust optimal discrete arc sizing for tree-shaped potential networks," Computational Optimization and Applications, Springer, vol. 73(3), pages 791-819, July.
    9. Jaap Pedersen & Thi Thai Le & Thorsten Koch & Janina Zittel, 2024. "Optimal discrete pipe sizing for tree-shaped CO2 networks," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(4), pages 1163-1187, December.
    10. Zhu, Jianting, 2018. "Effective aperture and orientation of fractal fracture network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 27-37.
    11. Ralf Lenz & Felipe Serrano, 2022. "Tight Convex Relaxations for the Expansion Planning Problem," Journal of Optimization Theory and Applications, Springer, vol. 194(1), pages 325-352, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:632:y:2023:i:p1:s0378437123008580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.