IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v614y2023ics0378437123001097.html
   My bibliography  Save this article

Quantum dimensionality reduction by linear discriminant analysis

Author

Listed:
  • Yu, Kai
  • Lin, Song
  • Guo, Gong-De

Abstract

The dimensionality reduction is generally used as the data preprocessing stage of many machine learning tasks and has become an essential branch of information processing. Due to the exponential growth of data, how constructing reasonable and efficient dimensionality reduction algorithms has been an open challenge recently. In this paper, we propose a quantum linear discriminant analysis algorithm for dimensionality reduction. In the proposed algorithm, the idea of quantum solving linear equations is utilized to obtain the shadow principal components and an intermediate state. After that, the special unitary operations are designed to assist in completing the dimensionality reduction. The theoretical analysis shows the proposed algorithm has exponential acceleration on the number of vectors and a quadratic speedup on the dimensionality of the original data space. Since this algorithm solves the restriction that the between-class scatter matrix must be reversible, it makes the algorithm more applicable. Moreover, instead of getting the quantum state in the projection direction, the algorithm obtains the corresponding quantum state of dimensionality reduction data so that the outputs can be directly applied to other quantum machine learning algorithms. To illustrate it, a simple example, quantum K-nearest Neighbor classification, is provided.

Suggested Citation

  • Yu, Kai & Lin, Song & Guo, Gong-De, 2023. "Quantum dimensionality reduction by linear discriminant analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 614(C).
  • Handle: RePEc:eee:phsmap:v:614:y:2023:i:c:s0378437123001097
    DOI: 10.1016/j.physa.2023.128554
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123001097
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.128554?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Mingchao & Liu, Hailing & Li, Yongmei & Li, Wenmin & Gao, Fei & Qin, Sujuan & Wen, Qiaoyan, 2022. "Quantum algorithms for anomaly detection using amplitude estimation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    2. Liu, Hai-Ling & Yu, Chao-Hua & Wan, Lin-Chun & Qin, Su-Juan & Gao, Fei & Wen, Qiaoyan, 2022. "Quantum mean centering for block-encoding-based quantum algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ye, Zi & Yu, Kai & Guo, Gong-De & Lin, Song, 2024. "Quantum self-organizing feature mapping neural network algorithm based on Grover search algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 639(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ning, Tong & Yang, Youlong & Du, Zhenye, 2023. "Quantum kernel logistic regression based Newton method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).
    2. Wang, Sha-Sha & Liu, Hai-Ling & Song, Yan-Qi & Gao, Fei & Qin, Su-Juan & Wen, Qiao-Yan, 2023. "Quantum alternating operator ansatz for solving the minimum exact cover problem," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    3. Li, Jing & Gao, Fei & Lin, Song & Guo, Mingchao & Li, Yongmei & Liu, Hailing & Qin, Sujuan & Wen, QiaoYan, 2023. "Quantum k-fold cross-validation for nearest neighbor classification algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:614:y:2023:i:c:s0378437123001097. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.