IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v608y2022ip2s0378437122008779.html
   My bibliography  Save this article

Experimental study of movement characteristics for different walking postures in a narrow channel

Author

Listed:
  • Li, Tao
  • Shi, Dongdong
  • Chen, Juan
  • Li, Huiwen
  • Ma, Jian

Abstract

In the event of a fire, the smoke produced by the fire will not only affect the visibility of pedestrians but also change the pedestrians’ walking posture. The pedestrians’ motion characteristics of stoop walking have not been systematically studied in pedestrian evacuation dynamics. Therefore, a series of single-file movement experiments under controlled laboratory conditions were performed by a transparent protective net which is used to limit the pedestrians’ height to change the walking posture. The probability density distribution of density and speed, the fundamental diagram, headway-speed relation and the lateral sway will be analyzed. The maximum flow rate of pedestrians in stoop walking is 26% lower than that of normal walking in speed-flow relation. Three states (free regime, weakly constrained regime, and strongly constrained regime) can be observed in the relationship between headway and speed, the free speed of pedestrians follows a Gaussian distribution. In addition to discussion of the longitudinal motion characteristics, lateral movement characteristics of the pedestrian will further be analyzed. The study found that the average lateral sway of normal walking is greater than that of stoop walking. The results of this study provide valuable information for the effects of different walking postures and help to develop precise models about different walking postures, which can finally contribute to the design of related pedestrian facilities.

Suggested Citation

  • Li, Tao & Shi, Dongdong & Chen, Juan & Li, Huiwen & Ma, Jian, 2022. "Experimental study of movement characteristics for different walking postures in a narrow channel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P2).
  • Handle: RePEc:eee:phsmap:v:608:y:2022:i:p2:s0378437122008779
    DOI: 10.1016/j.physa.2022.128319
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122008779
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.128319?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, R.Y. & Huang, H.J., 2008. "A mobile lattice gas model for simulating pedestrian evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 580-586.
    2. Zeng, Guang & Cao, Shuchao & Liu, Chi & Song, Weiguo, 2018. "Experimental and modeling study on relation of pedestrian step length and frequency under different headways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 237-248.
    3. Gao, Yuxing & Zhuang, Yifan & Dong, Fangshu & Peng, Fei & Zhang, Ping & Yang, Lizhong & Ni, Yong, 2020. "Experimental study on the effect of trolley case on unidirectional pedestrian flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
    4. Zhang, J. & Seyfried, A., 2014. "Comparison of intersecting pedestrian flows based on experiments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 316-325.
    5. Shi, Dongdong & Ma, Jian & Luo, Qian & Li, Xiaofei & Chen, Juan & Lin, Peng, 2021. "Fundamental diagrams of luggage-laden pedestrians ascending and descending stairs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    6. Liu, Xuan & Song, Weiguo & Zhang, Jun, 2009. "Extraction and quantitative analysis of microscopic evacuation characteristics based on digital image processing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(13), pages 2717-2726.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xue, Shuqi & Shiwakoti, Nirajan, 2023. "A meta-synthesis of experimental studies of pedestrian movement in single-file flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    2. Xue Lin & Long Cheng & Shuo Zhang & Qianling Wang, 2023. "Simulating the Effects of Gate Machines on Crowd Traffic Based on the Modified Social Force Model," Mathematics, MDPI, vol. 11(3), pages 1-12, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Yanghui & Zhang, Jun & Song, Weiguo, 2019. "Experimental study on the movement strategies of individuals in multidirectional flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    2. Shi, Zhigang & Zhang, Jun & Shang, Zhigang & Song, Weiguo, 2024. "Collision avoidance behaviours of luggage-laden pedestrians," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 639(C).
    3. Cao, Shuchao & Lian, Liping & Chen, Mingyi & Yao, Ming & Song, Weiguo & Fang, Zhiming, 2018. "Investigation of difference of fundamental diagrams in pedestrian flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 661-670.
    4. Tang, Tie-Qiao & Zhang, Bo-Tao & Zhang, Jian & Wang, Tao, 2019. "Statistical analysis and modeling of pedestrian flow in university canteen during peak period," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 29-40.
    5. Tan, Bangkun & Xuan, Chenrui & Xie, Wei & Shi, Meng & Ma, Yi, 2024. "Dynamic characteristics of the sideways movement of pedestrians: An experimental study based on single-file experiments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 639(C).
    6. Zeng, Tian & Wei, Yidong & Hu, Zuoan & Ma, Yi, 2023. "Comparison study in single-file pedestrian flow dynamics: Foot motion perspective versus head motion perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    7. Wang, Peng & Cao, Shuchao & Yao, Ming, 2019. "Fundamental diagrams for pedestrian traffic flow in controlled experiments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 266-277.
    8. Feng, Jiaojiao & Wang, Jinghong & Li, Jia & Li, Jiachen & Xu, Shuangyan & Liu, Juan & Li, Jiapeng & Wang, Yan, 2022. "Study on the law of vertical evacuation behavior during earthquakes considering social relationship," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    9. Bosina, Ernst & Weidmann, Ulrich, 2017. "Estimating pedestrian speed using aggregated literature data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 1-29.
    10. Xue, Shuqi & Shiwakoti, Nirajan, 2023. "A meta-synthesis of experimental studies of pedestrian movement in single-file flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    11. Shi, Zhigang & Zhang, Jun & Shang, Zhigang & Fan, Minghao & Song, Weiguo, 2022. "The effect of obstacle layouts on regulating luggage-laden pedestrian flow through bottlenecks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    12. Shi, Dongdong & Ma, Jian & Luo, Qian & Li, Xiaofei & Chen, Juan & Lin, Peng, 2021. "Fundamental diagrams of luggage-laden pedestrians ascending and descending stairs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    13. Wei, Yidong & Hu, Zuoan & Zeng, Tian & Xie, Wei & Ma, Yi, 2023. "Influence of walkway slope on single-file pedestrian flow dynamics: Results from an experimental study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    14. Chen, Changkun & Sun, Huakai & Lei, Peng & Zhao, Dongyue & Shi, Congling, 2021. "An extended model for crowd evacuation considering pedestrian panic in artificial attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    15. Zeng, Guang & Cao, Shuchao & Liu, Chi & Song, Weiguo, 2018. "Experimental and modeling study on relation of pedestrian step length and frequency under different headways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 237-248.
    16. Lian, Liping & Song, Weiguo & Yuen, Kwok Kit Richard & Telesca, Luciano, 2018. "Investigating the time evolution of some parameters describing inflow processes of pedestrians in a room," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 77-88.
    17. Wang, Jiayue & Boltes, Maik & Seyfried, Armin & Zhang, Jun & Ziemer, Verena & Weng, Wenguo, 2018. "Linking pedestrian flow characteristics with stepping locomotion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 106-120.
    18. Fu, Zhijian & Li, Tao & Deng, Qiangqiang & Schadschneider, Andreas & Luo, Lin & Ma, Jian, 2021. "Effect of turning curvature on the single-file dynamics of pedestrian flow: An experimental study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    19. Liu, Weisong & Zhang, Jun & Rasa, Abdul Rahim & Li, Xudong & Ren, Xiangxia & Song, Weiguo, 2023. "Understanding step synchronization in social groups: A novel method to recognize group," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 628(C).
    20. Li, Jun & Fu, Siyao & He, Haibo & Jia, Hongfei & Li, Yanzhong & Guo, Yi, 2015. "Simulating large-scale pedestrian movement using CA and event driven model: Methodology and case study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 304-321.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:608:y:2022:i:p2:s0378437122008779. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.