IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v604y2022ics0378437122004630.html
   My bibliography  Save this article

Multi-player snowdrift game on scale-free simplicial complexes

Author

Listed:
  • Xu, Yan
  • Feng, Meiling
  • Zhu, Yuying
  • Xia, Chengyi

Abstract

Nowadays, a large number of complex systems have been characterized by networks connecting the pairwise interacting agents. However, from human decision-making behaviors to chemical reactions and biological activities, interactions can also occur within groups with three or more nodes, which cannot be simply expressed by pairwise links. In this work, we consider the interactions beyond pairwise connections, and then propose a completely new and general method to explore the evolutionary dynamics of multi-player snowdrift game on networks with higher-order interactions. Among them, simplicial complexes combining 1-simplex and 2-simplex interactions are adopted to establish the underlying network, and the impact of non-pairwise interactions on the dynamics of multi-player snowdrift game is studied by adjusting the proportion (ρ) of 2-simplex. Numerical simulations show that the global frequency of cooperation depends on both the cost-to-benefit ratio (r) and ρ: when r is too small or too large, the variation of ρ has no influence on the cooperation frequency; while r is medium-sized, the cooperation frequency reduces with the increase of ρ. Surprisingly, by introducing the non-pairwise interactions based on 2-simplex, cooperation can be facilitated under some special parameter settings. Moreover, when r is moderate, the decrease in the cooperation frequency of low-degree individuals is the main reason for causing the decline of the global cooperation frequency. Current results provide a new perspective for us to comprehend the evolution of cooperation within the realistic networked population.

Suggested Citation

  • Xu, Yan & Feng, Meiling & Zhu, Yuying & Xia, Chengyi, 2022. "Multi-player snowdrift game on scale-free simplicial complexes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
  • Handle: RePEc:eee:phsmap:v:604:y:2022:i:c:s0378437122004630
    DOI: 10.1016/j.physa.2022.127698
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122004630
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.127698?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, H. & Jia, D. & Sendiña-Nadal, I. & Zhang, M. & Wang, Z. & Li, X. & Alfaro-Bittner, K. & Moreno, Y. & Boccaletti, S., 2021. "Evolutionary games on simplicial complexes," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    2. Zhu, Jiabao & Liu, Xingwen, 2021. "The number of strategy changes can be used to promote cooperation in spatial snowdrift game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 575(C).
    3. Seth Rakoff-Nahoum & Kevin R. Foster & Laurie E. Comstock, 2016. "The evolution of cooperation within the gut microbiota," Nature, Nature, vol. 533(7602), pages 255-259, May.
    4. Li, Kun & Mao, Yizhou & Wei, Zhenlin & Cong, Rui, 2021. "Pool-rewarding in N-person snowdrift game," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    5. Yang, Han-Xin & Yang, Jing, 2019. "Reputation-based investment strategy promotes cooperation in public goods games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 886-893.
    6. Ernst Fehr & Urs Fischbacher, 2003. "The nature of human altruism," Nature, Nature, vol. 425(6960), pages 785-791, October.
    7. Dong, Yukun & Xu, Hedong & Fan, Suohai, 2019. "Memory-based stag hunt game on regular lattices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 247-255.
    8. Jia, Danyang & Li, Tong & Zhao, Yang & Zhang, Xiaoqin & Wang, Zhen, 2022. "Empty nodes affect conditional cooperation under reinforcement learning," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    9. Hu, Xiang & Liu, Xingwen, 2021. "Unfixed-neighbor-mechanism promotes cooperation in evolutionary snowdrift game on lattice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    10. L. V. Gambuzza & F. Patti & L. Gallo & S. Lepri & M. Romance & R. Criado & M. Frasca & V. Latora & S. Boccaletti, 2021. "Stability of synchronization in simplicial complexes," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    11. Xiaofeng Wang, 2021. "Costly Participation and The Evolution of Cooperation in the Repeated Public Goods Game," Dynamic Games and Applications, Springer, vol. 11(1), pages 161-183, March.
    12. Christoph Hauert & Michael Doebeli, 2004. "Spatial structure often inhibits the evolution of cooperation in the snowdrift game," Nature, Nature, vol. 428(6983), pages 643-646, April.
    13. Jeff Gore & Hyun Youk & Alexander van Oudenaarden, 2009. "Snowdrift game dynamics and facultative cheating in yeast," Nature, Nature, vol. 459(7244), pages 253-256, May.
    14. Wettergren, Thomas A., 2021. "Replicator dynamics of an N-player snowdrift game with delayed payoffs," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    15. Jörg Gross & Carsten K. W. Dreu, 2019. "The rise and fall of cooperation through reputation and group polarization," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    16. Li, Xiaopeng & Sun, Shiwen & Xia, Chengyi, 2019. "Reputation-based adaptive adjustment of link weight among individuals promotes the cooperation in spatial social dilemmas," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 810-820.
    17. Lee, K.H. & Chan, Chun-Him & Hui, P.M. & Zheng, Da-Fang, 2008. "Cooperation in N-person evolutionary snowdrift game in scale-free Barabási–Albert networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(22), pages 5602-5608.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Peipei & Li, Dandan, 2023. "A generalized public goods game model based on Nash bargaining," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    2. Cheng, Jiangjiang & Mei, Wenjun & Su, Wei & Chen, Ge, 2023. "Evolutionary games on networks: Phase transition, quasi-equilibrium, and mathematical principles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).
    3. Guo, Shiqiang & Wang, Juan & Zhao, Dawei & Xia, Chengyi, 2023. "Role of second-order reputation evaluation in the multi-player snowdrift game on scale-free simplicial complexes," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    4. Palafox-Castillo, Gerardo & Berrones-Santos, Arturo, 2022. "Stochastic epidemic model on a simplicial complex," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    5. Zhao, Zhengwu & Zhang, Chunyan, 2023. "The mechanisms of labor division from the perspective of task urgency and game theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Chaoqian & Lin, Zongzhe & Rothman, Dale S., 2022. "Public goods game on coevolving networks driven by the similarity and difference of payoff," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    2. Pi, Jinxiu & Wang, Chun & Zhou, Die & Tang, Wei & Yang, Guanghui, 2024. "Evolutionary dynamics of N-person snowdrift game with two thresholds in well-mixed and structured populations," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    3. Lu, Shounan & Zhu, Ge & Dai, Jianhua, 2023. "Promoting effect of adaptive interaction based on random neighbors to cooperation in the spatial prisoner's dilemma game," Applied Mathematics and Computation, Elsevier, vol. 450(C).
    4. Guo, Shiqiang & Wang, Juan & Zhao, Dawei & Xia, Chengyi, 2023. "Role of second-order reputation evaluation in the multi-player snowdrift game on scale-free simplicial complexes," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    5. Ke, Jianhong & Li, Ping-Ping & Lin, Zhenquan, 2022. "Dissatisfaction-driven replicator dynamics of the evolutionary snowdrift game in structured populations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    6. Zu, Jinjing & Xu, Fanxin & Jin, Tao & Xiang, Wei, 2022. "Reward and Punishment Mechanism with weighting enhances cooperation in evolutionary games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    7. Wu, Yu’e & Zhang, Zhipeng & Yang, Guoli & Liu, Haixin & Zhang, Qingfeng, 2022. "Evolution of cooperation driven by diversity on a double-layer square lattice," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    8. Huang, Chaochao & Wang, Chaoqian, 2024. "Memory-based involution dilemma on square lattices," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    9. Ma, Yin-Jie & Jiang, Zhi-Qiang & Podobnik, Boris, 2022. "Predictability of players’ actions as a mechanism to boost cooperation," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    10. Pi, Jinxiu & Yang, Guanghui & Yang, Hui, 2022. "Evolutionary dynamics of cooperation in N-person snowdrift games with peer punishment and individual disguise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
    11. Wang, Chaoqian & Szolnoki, Attila, 2022. "Involution game with spatio-temporal heterogeneity of social resources," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    12. Feng, Kehuan & Han, Songlin & Feng, Minyu & Szolnoki, Attila, 2024. "An evolutionary game with reputation-based imitation-mutation dynamics," Applied Mathematics and Computation, Elsevier, vol. 472(C).
    13. Xie, Yunya & Bai, Yu & Zhang, Yankun & Peng, Zhengyin, 2024. "Trust-induced cooperation under the complex interaction of networks and emotions," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    14. Wenman Chen & Ji Quan & Xianjia Wang, 2024. "The emergence and maintenance of cooperation in the public goods game under stochastic strategy updating rule with preference," Dynamic Games and Applications, Springer, vol. 14(5), pages 1225-1237, November.
    15. Jorge Peña & Yannick Rochat, 2012. "Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
    16. Yunsheng Deng & Jihui Zhang, 2022. "The choice-decision based on memory and payoff favors cooperation in stag hunt game on interdependent networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(2), pages 1-13, February.
    17. Su, Ran & Fang, Zhi-Ming & Hao, Qing-Yi & Sheng, Chun & Fu, Yuan-Jiao, 2024. "The evolution of cooperation affected by unidirectional acceptability mechanism on interdependent networks," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    18. Guo, H. & Jia, D. & Sendiña-Nadal, I. & Zhang, M. & Wang, Z. & Li, X. & Alfaro-Bittner, K. & Moreno, Y. & Boccaletti, S., 2021. "Evolutionary games on simplicial complexes," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    19. Wu, Yu’e & Zhang, Zhipeng & Wang, Xinyu & Chang, Shuhua, 2019. "Impact of probabilistic incentives on the evolution of cooperation in complex topologies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 307-314.
    20. Zou, Kuan & Han, Wenchen & Zhang, Lan & Huang, Changwei, 2024. "The spatial public goods game on hypergraphs with heterogeneous investment," Applied Mathematics and Computation, Elsevier, vol. 466(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:604:y:2022:i:c:s0378437122004630. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.