IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v601y2022ics0378437122003806.html
   My bibliography  Save this article

Multilayer heat equations and their solutions via oscillating integral transforms

Author

Listed:
  • Itkin, Andrey
  • Lipton, Alexander
  • Muravey, Dmitry

Abstract

By expanding the Dirac delta function in terms of the eigenfunctions of the corresponding Sturm–Liouville problem, we construct some new (oscillating) integral transforms. These transforms are then used to solve various finance, physics, and mathematics problems, which could be characterized by the existence of a multilayer spatial structure and moving (time-dependent) boundaries (internal interfaces) between the layers. Thus, constructed solutions are semi-analytical and extend the authors’ previous work (Itkin, Lipton, Muravey, Multilayer heat equations: Application to finance, FMF, 1, 2021). However, our new method does not duplicate the previous one but provides alternative representations of the solution which have different properties and serve other purposes.

Suggested Citation

  • Itkin, Andrey & Lipton, Alexander & Muravey, Dmitry, 2022. "Multilayer heat equations and their solutions via oscillating integral transforms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 601(C).
  • Handle: RePEc:eee:phsmap:v:601:y:2022:i:c:s0378437122003806
    DOI: 10.1016/j.physa.2022.127544
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122003806
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.127544?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carr, Elliot J. & March, Nathan G., 2018. "Semi-analytical solution of multilayer diffusion problems with time-varying boundary conditions and general interface conditions," Applied Mathematics and Computation, Elsevier, vol. 333(C), pages 286-303.
    2. A. Itkin & A. Lipton & D. Muravey, 2021. "Multilayer heat equations: application to finance," Papers 2102.08338, arXiv.org.
    3. Andrey Itkin & Alexander Lipton & Dmitry Muravey, 2021. "Generalized Integral Transforms in Mathematical Finance," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 12147, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrey Itkin, 2023. "Semi-analytic pricing of American options in time-dependent jump-diffusion models with exponential jumps," Papers 2308.08760, arXiv.org, revised Feb 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moisés A. C. Lemos & Camilla T. Baran & André L. B. Cavalcante & Ennio M. Palmeira, 2023. "A Semi-Analytical Model of Contaminant Transport in Barrier Systems with Arbitrary Numbers of Layers," Sustainability, MDPI, vol. 15(23), pages 1-18, November.
    2. A. Itkin & A. Lipton & D. Muravey, 2021. "Multilayer heat equations: application to finance," Papers 2102.08338, arXiv.org.
    3. Andrey Itkin & Alexander Lipton & Dmitry Muravey, 2021. "Multilayer heat equations and their solutions via oscillating integral transforms," Papers 2112.00949, arXiv.org, revised Dec 2021.
    4. Andrey Itkin & Dmitry Muravey, 2021. "Semi-analytical pricing of barrier options in the time-dependent $\lambda$-SABR model," Papers 2109.02134, arXiv.org.
    5. Andrey Itkin & Dmitry Muravey, 2023. "American options in time-dependent one-factor models: Semi-analytic pricing, numerical methods and ML support," Papers 2307.13870, arXiv.org.
    6. Alexander Lipton & Artur Sepp, 2022. "Toward an efficient hybrid method for pricing barrier options on assets with stochastic volatility," Papers 2202.07849, arXiv.org.
    7. Taneco-Hernández, M.A. & Morales-Delgado, V.F. & Gómez-Aguilar, J.F., 2019. "Fundamental solutions of the fractional Fresnel equation in the real half-line," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 807-827.
    8. Andrey Itkin, 2023. "Semi-analytic pricing of American options in time-dependent jump-diffusion models with exponential jumps," Papers 2308.08760, arXiv.org, revised Feb 2024.
    9. Jan Barlak & Matus Bakon & Martin Rovnak & Martina Mokrisova, 2022. "Heat Equation as a Tool for Outliers Mitigation in Run-Off Triangles for Valuing the Technical Provisions in Non-Life Insurance Business," Risks, MDPI, vol. 10(9), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:601:y:2022:i:c:s0378437122003806. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.