IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v598y2022ics0378437122002655.html
   My bibliography  Save this article

A novel quantum image encryption technique based on improved controlled alternated quantum walks and hyperchaotic system

Author

Listed:
  • Gao, Ya-jun
  • Xie, Hong-wei
  • Zhang, Jun
  • Zhang, Hao

Abstract

This paper proposes a novel quantum image encryption algorithm based on a local substitution and global permutation scheme. First, a plaintext-related secret key is generated by using a hyperchaotic system; second, the plain image is scrambled employing a block-based general Arnold transform and permutation-based special linear transform; third, S-box substitution and special linear transform are iterated multiple times until certain conditions are achieved. A novel controlled alternated quantum walks scheme is also proposed to generate substitution boxes. Numerical simulation shows that the proposed encryption scheme can effectively a encrypt plain image to an incomprehensible noise image, and is capable of resisting a variety of attacks.

Suggested Citation

  • Gao, Ya-jun & Xie, Hong-wei & Zhang, Jun & Zhang, Hao, 2022. "A novel quantum image encryption technique based on improved controlled alternated quantum walks and hyperchaotic system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
  • Handle: RePEc:eee:phsmap:v:598:y:2022:i:c:s0378437122002655
    DOI: 10.1016/j.physa.2022.127334
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122002655
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.127334?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Xingyuan & Li, Yanpei & Jin, Jie, 2020. "A new one-dimensional chaotic system with applications in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    2. EL-Latif, Ahmed A. Abd & Abd-El-Atty, Bassem & Venegas-Andraca, Salvador E., 2020. "Controlled alternate quantum walk-based pseudo-random number generator and its application to quantum color image encryption," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Hua-Kun & Xu, Guang-Bao & Jiang, Dong-Huan, 2023. "Quantum grayscale image encryption and secret sharing schemes based on Rubik’s Cube," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 612(C).
    2. Chen, Zigang & Pan, Ji & Yan, Yi & Zhu, Haihua & Li, Xiaoyong, 2022. "A parallel double scrambling encryption scheme for MQIR image based on random combination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qingye Huang & Linqing Huang & Shuting Cai & Xiaoming Xiong & Hui Zhang, 2023. "On a Symmetric Image Cryptosystem Based on a Novel One-Dimensional Chaotic System and Banyan Network," Mathematics, MDPI, vol. 11(21), pages 1-21, October.
    2. Sameh Askar & Ahmad Alshamrani & Aesha Elghandour & Abdelrahman Karawia, 2023. "An Image-Encipherment Algorithm Using a Combination of a One-Dimensional Chaotic Map and a Three-Dimensional Piecewise Chaotic Map," Mathematics, MDPI, vol. 11(2), pages 1-19, January.
    3. Pai Liu & Shihua Zhou & Wei Qi Yan, 2022. "A 3D Cuboid Image Encryption Algorithm Based on Controlled Alternate Quantum Walk of Message Coding," Mathematics, MDPI, vol. 10(23), pages 1-26, November.
    4. Moreira Bezerra, João Inácio & Valduga de Almeida Camargo, Vinícius & Molter, Alexandre, 2021. "A new efficient permutation-diffusion encryption algorithm based on a chaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    5. Yan, Minxiu & Jie, Jingfeng, 2022. "Fractional-order multiwing switchable chaotic system with a wide range of parameters," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    6. Folifack Signing, V.R. & Gakam Tegue, G.A. & Kountchou, M. & Njitacke, Z.T. & Tsafack, N. & Nkapkop, J.D.D. & Lessouga Etoundi, C.M. & Kengne, J., 2022. "A cryptosystem based on a chameleon chaotic system and dynamic DNA coding," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    7. Ahmed A. Abd El-Latif & Janarthanan Ramadoss & Bassem Abd-El-Atty & Hany S. Khalifa & Fahimeh Nazarimehr, 2022. "A Novel Chaos-Based Cryptography Algorithm and Its Performance Analysis," Mathematics, MDPI, vol. 10(14), pages 1-22, July.
    8. Man, Zhenlong & Li, Jinqing & Di, Xiaoqiang & Sheng, Yaohui & Liu, Zefei, 2021. "Double image encryption algorithm based on neural network and chaos," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    9. Sun, Jing-yu & Wang, Wan-ting & Zhang, Hao & Zhang, Jun, 2023. "Color image quantum steganography scheme and circuit design based on DWT+DCT+SVD," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).
    10. Mohamed Abd Elaziz & Esraa Osama Abo Zaid & Mohammed A. A. Al-qaness & Rehab Ali Ibrahim, 2021. "Automatic Superpixel-Based Clustering for Color Image Segmentation Using q-Generalized Pareto Distribution under Linear Normalization and Hunger Games Search," Mathematics, MDPI, vol. 9(19), pages 1-18, September.
    11. Haider, Muhammad Imran & Shah, Tariq & Ali, Asif & Shah, Dawood & Khalid, Ijaz, 2023. "An Innovative approach towards image encryption by using novel PRNs and S-boxes Modeling techniques," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 209(C), pages 153-168.
    12. Xianhua Song & Guanglong Chen & Ahmed A. Abd El-Latif, 2022. "Quantum Color Image Encryption Scheme Based on Geometric Transformation and Intensity Channel Diffusion," Mathematics, MDPI, vol. 10(17), pages 1-23, August.
    13. Ye, Guodong & Wu, Huishan & Liu, Min & Huang, Xiaoling, 2023. "Reversible image-hiding algorithm based on singular value sampling and compressive sensing," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:598:y:2022:i:c:s0378437122002655. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.