IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v581y2021ics0378437121004775.html
   My bibliography  Save this article

Ultra-efficient information detection on large-scale online social networks

Author

Listed:
  • Sun, Jiachen
  • Feng, Ling
  • Du, Mingwei
  • Ma, Xiao
  • Fan, Zhengping
  • Gloor, Peter
  • Hu, Yanqing

Abstract

As a powerful and low-cost instant information dissemination platform, large-scale online social networks (OSNs) play a pivotal role in shaping our modern information age. The efficient detection of wide-spreading information in OSNs is very important in many aspects including public opinion supervision, social governance, stock markets, counter-terrorism and presidential election. However, real-world OSNs have gigantic sizes and thus their full structural data are usually unavailable, making this problem extremely challenging. In this work, we illustrate the close mapping between efficient detection and optimal spreading from the perspective of network percolation theory. This analogy inspires us to propose a theory of using only limited local network information to select the optimal set of information sensors. Through extensive simulations on both synthetic and real-world networks, we find that for networks with theoretically infinite size, only a finite and small number of sensor nodes are needed to detect the global spreading information with almost certainty. Most importantly, we empirically confirm the utility of our theory on the largest micro blog in China by crawling almost the full Sina Weibo social network with 99,546,027 users in 2014 and the real spreading data of Weibo messages.

Suggested Citation

  • Sun, Jiachen & Feng, Ling & Du, Mingwei & Ma, Xiao & Fan, Zhengping & Gloor, Peter & Hu, Yanqing, 2021. "Ultra-efficient information detection on large-scale online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
  • Handle: RePEc:eee:phsmap:v:581:y:2021:i:c:s0378437121004775
    DOI: 10.1016/j.physa.2021.126204
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121004775
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.126204?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert M. May & Simon A. Levin & George Sugihara, 2008. "Ecology for bankers," Nature, Nature, vol. 451(7181), pages 893-894, February.
    2. Jiachen Sun & Ling Feng & Jiarong Xie & Xiao Ma & Dashun Wang & Yanqing Hu, 2020. "Revealing the predictability of intrinsic structure in complex networks," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    3. Peter Dodds & Christopher Danforth, 2010. "Measuring the Happiness of Large-Scale Written Expression: Songs, Blogs, and Presidents," Journal of Happiness Studies, Springer, vol. 11(4), pages 441-456, August.
    4. Yanqing Hu & Shenggong Ji & Yuliang Jin & Ling Feng & H. Eugene Stanley & Shlomo Havlin, 2018. "Local structure can identify and quantify influential global spreaders in large scale social networks," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 115(29), pages 7468-7472, July.
    5. Manuel Garcia-Herranz & Esteban Moro & Manuel Cebrian & Nicholas A Christakis & James H Fowler, 2014. "Using Friends as Sensors to Detect Global-Scale Contagious Outbreaks," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-7, April.
    6. Jiarong Xie & Fanhui Meng & Jiachen Sun & Xiao Ma & Gang Yan & Yanqing Hu, 2021. "Detecting and modelling real percolation and phase transitions of information on social media," Nature Human Behaviour, Nature, vol. 5(9), pages 1161-1168, September.
    7. Robert M. Bond & Christopher J. Fariss & Jason J. Jones & Adam D. I. Kramer & Cameron Marlow & Jaime E. Settle & James H. Fowler, 2012. "A 61-million-person experiment in social influence and political mobilization," Nature, Nature, vol. 489(7415), pages 295-298, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benjamin D. Horne & Natalie M. Rice & Catherine A. Luther & Damian J. Ruck & Joshua Borycz & Suzie L. Allard & Michael Fitzgerald & Oleg Manaev & Brandon C. Prins & Maureen Taylor & R. Alexander Bentl, 2023. "Generational effects of culture and digital media in former Soviet Republics," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-11, December.
    2. Manuel Garcia-Herranz & Esteban Moro & Manuel Cebrian & Nicholas A Christakis & James H Fowler, 2014. "Using Friends as Sensors to Detect Global-Scale Contagious Outbreaks," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-7, April.
    3. Fanhui Meng & Haoming Sun & Jiarong Xie & Chengjun Wang & Jiajing Wu & Yanqing Hu, 2021. "Preference for Number of Friends in Online Social Networks," Future Internet, MDPI, vol. 13(9), pages 1-13, September.
    4. Resce, Giuliano & Maynard, Diana, 2018. "What matters most to people around the world? Retrieving Better Life Index priorities on Twitter," Technological Forecasting and Social Change, Elsevier, vol. 137(C), pages 61-75.
    5. Huang, Shuhong & Wang, Xiangrong & Peng, Liyang & Xie, Jiarong & Sun, Jiachen & Hu, Yanqing, 2021. "Optimal compression for bipartite networks," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    6. Alan Gerber & Mitchell Hoffman & John Morgan & Collin Raymond, 2020. "One in a Million: Field Experiments on Perceived Closeness of the Election and Voter Turnout," American Economic Journal: Applied Economics, American Economic Association, vol. 12(3), pages 287-325, July.
    7. Ruyi Ge & Juan Feng & Bin Gu, 2016. "Borrower’s default and self-disclosure of social media information in P2P lending," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 2(1), pages 1-6, December.
    8. Jiang, Lincheng & Zhao, Xiang & Ge, Bin & Xiao, Weidong & Ruan, Yirun, 2019. "An efficient algorithm for mining a set of influential spreaders in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 58-65.
    9. Martin Lindegren & Vasilis Dakos & Joachim P Gröger & Anna Gårdmark & Georgs Kornilovs & Saskia A Otto & Christian Möllmann, 2012. "Early Detection of Ecosystem Regime Shifts: A Multiple Method Evaluation for Management Application," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    10. Anand, Kartik & Gai, Prasanna & Marsili, Matteo, 2012. "Rollover risk, network structure and systemic financial crises," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1088-1100.
    11. Yann Algan & Quoc-Anh Do & Nicolò Dalvit & Alexis Le Chapelain & Yves Zenou, 2015. "How Social Networks Shape Our Beliefs: A Natural Experiment among Future French Politicians," Working Papers hal-03459820, HAL.
    12. Daniele Barchiesi & Helen Susannah Moat & Christian Alis & Steven Bishop & Tobias Preis, 2015. "Quantifying International Travel Flows Using Flickr," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-8, July.
    13. repec:spo:wpmain:info:hdl:2441/78vacv4udu92eq3fec89svm9uv is not listed on IDEAS
    14. Julian Freitag & Anna Kerkhof & Johannes Münster, 2021. "Selective sharing of news items and the political position of news outlets," ECONtribute Discussion Papers Series 056, University of Bonn and University of Cologne, Germany.
    15. Donati, Dante, 2023. "Mobile Internet access and political outcomes: Evidence from South Africa," Journal of Development Economics, Elsevier, vol. 162(C).
    16. Yuho Chung & Yiwei Li & Jianmin Jia, 2021. "Exploring embeddedness, centrality, and social influence on backer behavior: the role of backer networks in crowdfunding," Journal of the Academy of Marketing Science, Springer, vol. 49(5), pages 925-946, September.
    17. Liberini, Federica & Redoano, Michela & Russo, Antonio & Cuevas, Angel & Cuevas, Ruben, 2018. "Politics in the Facebook Era Evidence from the 2016 US Presidential Elections," CAGE Online Working Paper Series 389, Competitive Advantage in the Global Economy (CAGE).
    18. Xue Guo & Hu Zhang & Tianhai Tian, 2019. "Multi-Likelihood Methods for Developing Stock Relationship Networks Using Financial Big Data," Papers 1906.08088, arXiv.org.
    19. X. Zhang & L. D. Valdez & H. E. Stanley & L. A. Braunstein, 2019. "Modeling Risk Contagion in the Venture Capital Market: A Multilayer Network Approach," Complexity, Hindawi, vol. 2019, pages 1-11, December.
    20. Carlos León, 2020. "Banks in Colombia: How Homogeneous Are They?," Revista de Economía del Rosario, Universidad del Rosario, vol. 23(2), pages 1-32, December.
    21. Fabio Caccioli & Paolo Barucca & Teruyoshi Kobayashi, 2018. "Network models of financial systemic risk: a review," Journal of Computational Social Science, Springer, vol. 1(1), pages 81-114, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:581:y:2021:i:c:s0378437121004775. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.