IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v573y2021ics0378437121002168.html
   My bibliography  Save this article

Limiting value of the Kolkata index for social inequality and a possible social constant

Author

Listed:
  • Ghosh, Asim
  • Chakrabarti, Bikas K.

Abstract

Based on some analytic structural properties of the Gini and Kolkata indices for social inequality, as obtained from a generic form of the Lorenz function, we make a conjecture that the limiting (effective saturation) value of the above-mentioned indices is about 0.865. This, together with some more new observations on the citation statistics of individual authors (including Nobel laureates), suggests that about 14% of people or papers or social conflicts tend to earn or attract or cause about 86% of wealth or citations or deaths respectively in very competitive situations in markets, universities or wars. This is a modified form of the (more than a) century old 80−20 law of Pareto in economy (not visible today because of various welfare and other strategies) and gives an universal value (0.86) of social (inequality) constant or number.

Suggested Citation

  • Ghosh, Asim & Chakrabarti, Bikas K., 2021. "Limiting value of the Kolkata index for social inequality and a possible social constant," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
  • Handle: RePEc:eee:phsmap:v:573:y:2021:i:c:s0378437121002168
    DOI: 10.1016/j.physa.2021.125944
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121002168
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.125944?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eliazar, Iddo, 2015. "The sociogeometry of inequality: Part II," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 426(C), pages 116-137.
    2. Asim Ghosh & Arnab Chatterjee & Jun-ichi Inoue & Bikas K. Chakrabarti, 2015. "Inequality measures in kinetic exchange models of wealth distributions," Papers 1509.02711, arXiv.org, revised Feb 2016.
    3. Eliazar, Iddo, 2015. "The sociogeometry of inequality: Part I," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 426(C), pages 93-115.
    4. Chatterjee, Arnab & Ghosh, Asim & Chakrabarti, Bikas K., 2017. "Socio-economic inequality: Relationship between Gini and Kolkata indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 583-595.
    5. Sinha, Antika & Chakrabarti, Bikas K., 2019. "Inequality in death from social conflicts: A Gini & Kolkata indices-based study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    6. Solomon, Sorin & Richmond, Peter, 2001. "Power laws of wealth, market order volumes and market returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 188-197.
    7. Suchismita Banerjee & Bikas K. Chakrabarti & Manipushpak Mitra & Suresh Mutuswami, 2020. "Inequality Measures: The Kolkata index in comparison with other measures," Papers 2005.08762, arXiv.org, revised Oct 2020.
    8. Banerjee, Suchismita & Chakrabarti, Bikas K. & Mitra, Manipushpak & Mutuswami, Suresh, 2020. "On the Kolkata index as a measure of income inequality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    9. Tam'as S. Bir'o & Zolt'an N'eda, 2020. "Gintropy: Gini index based generalization of Entropy," Papers 2007.04829, arXiv.org.
    10. repec:cup:cbooks:9781107013445 is not listed on IDEAS
    11. Ghosh, Asim & Chatterjee, Arnab & Inoue, Jun-ichi & Chakrabarti, Bikas K., 2016. "Inequality measures in kinetic exchange models of wealth distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 465-474.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ghosh, Asim & Chakrabarti, Bikas K., 2023. "Scaling and kinetic exchange like behavior of Hirsch index and total citation distributions: Scopus-CiteScore data analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    2. Biró, Tamás S. & Telcs, András & Józsa, Máté & Néda, Zoltán, 2023. "Gintropic scaling of scientometric indexes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    3. Manna, S.S. & Biswas, Soumyajyoti & Chakrabarti, Bikas K., 2022. "Near universal values of social inequality indices in self-organized critical models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    4. Ruz, Soumendra Nath, 2023. "Amazing aspects of inequality indices (Gini and Kolkata Index) of COVID-19 confirmed cases in India," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P2).
    5. Joseph, Bijin & Chakrabarti, Bikas K., 2022. "Variation of Gini and Kolkata indices with saving propensity in the Kinetic Exchange model of wealth distribution: An analytical study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruz, Soumendra Nath, 2023. "Amazing aspects of inequality indices (Gini and Kolkata Index) of COVID-19 confirmed cases in India," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P2).
    2. Chatterjee, Arnab & Ghosh, Asim & Chakrabarti, Bikas K., 2017. "Socio-economic inequality: Relationship between Gini and Kolkata indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 583-595.
    3. Banerjee, Suchismita & Chakrabarti, Bikas K. & Mitra, Manipushpak & Mutuswami, Suresh, 2020. "On the Kolkata index as a measure of income inequality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    4. Suchismita Banerjee & Bikas K. Chakrabarti & Manipushpak Mitra & Suresh Mutuswami, 2020. "Inequality Measures: The Kolkata index in comparison with other measures," Papers 2005.08762, arXiv.org, revised Oct 2020.
    5. Christopher W. Kulp & Michael Kurtz & Charles Hunt & Matthew Velardi, 2023. "The distribution of wealth: an agent-based approach to examine the effect of estate taxation, skill inheritance, and the Carnegie Effect," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 18(2), pages 397-415, April.
    6. Aydiner, Ekrem & Cherstvy, Andrey G. & Metzler, Ralf, 2018. "Wealth distribution, Pareto law, and stretched exponential decay of money: Computer simulations analysis of agent-based models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 278-288.
    7. D. S. Quevedo & C. J. Quimbay, 2019. "Piketty's second fundamental law of capitalism as an emergent property in a kinetic wealth-exchange model of economic growth," Papers 1903.00952, arXiv.org, revised Mar 2019.
    8. Wang, Lingling & Lai, Shaoyong & Sun, Rongmei, 2022. "Optimal control about multi-agent wealth exchange and decision-making competence," Applied Mathematics and Computation, Elsevier, vol. 417(C).
    9. Masato Okamoto, 2022. "Level-adjusted S-Gini index and its complementary index as a pair of sensitivity-adjustable inequality measures," Economics Bulletin, AccessEcon, vol. 42(1), pages 1-16.
    10. Joseph, Bijin & Chakrabarti, Bikas K., 2022. "Variation of Gini and Kolkata indices with saving propensity in the Kinetic Exchange model of wealth distribution: An analytical study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
    11. G. Dimarco & L. Pareschi & G. Toscani & M. Zanella, 2020. "Wealth distribution under the spread of infectious diseases," Papers 2004.13620, arXiv.org.
    12. Manna, S.S. & Biswas, Soumyajyoti & Chakrabarti, Bikas K., 2022. "Near universal values of social inequality indices in self-organized critical models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    13. Palestini, Arsen & Pignataro, Giuseppe, 2016. "A graph-based approach to inequality assessment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 455(C), pages 65-78.
    14. Iddo Eliazar & Giovanni M. Giorgi, 2020. "From Gini to Bonferroni to Tsallis: an inequality-indices trek," METRON, Springer;Sapienza Università di Roma, vol. 78(2), pages 119-153, August.
    15. Hunter A. Vallejos & James J. Nutaro & Kalyan S. Perumalla, 2018. "An agent-based model of the observed distribution of wealth in the United States," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(3), pages 641-656, October.
    16. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.
    17. Richmond, Peter & Sabatelli, Lorenzo, 2004. "Peer pressure and Generalised Lotka Volterra models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 344-348.
    18. G. Willis, 2004. "Laser Welfare: First Steps in Econodynamic Engineering," Papers cond-mat/0408227, arXiv.org.
    19. Victor M. Yakovenko, 2007. "Econophysics, Statistical Mechanics Approach to," Papers 0709.3662, arXiv.org, revised Aug 2008.
    20. Gabaix, Xavier & Gopikrishnan, Parameswaran & Plerou, Vasiliki & Stanley, H.Eugene, 2003. "Understanding the cubic and half-cubic laws of financial fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 1-5.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:573:y:2021:i:c:s0378437121002168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.