IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v568y2021ics0378437120310153.html
   My bibliography  Save this article

Quantifying the organization of urban elements through the statistical distributions of their spatial spreading metrics

Author

Listed:
  • Perlada, Camille D.
  • Orden, Alfiero K.
  • Cirunay, Michelle T.
  • Batac, Rene C.

Abstract

We probe the underlying organization emerging out of the growth of urban settlements by using various measures that quantify their spatial spreading. In particular, we report the emergence of fat-tailed regimes in the distributions of the three metrics we investigated in the case of the self-organized Metro Manila conurbation: (1) the city road lengths and the areas of road-bounded blocks; (2) the Voronoi areas, the effective “areas of influence” of each of the buildings in the city; and (3) the k-nearest-neighbor (kNN) distances of economic structures in the city. Statistical goodness-of-fit tests are conducted to obtain representative decaying power-law trends for these fat-tailed distributions, as a first approximation for the scaling behavior, particularly at the largest scales. The obtained distributions are found to differ significantly from the corresponding results generated from memoryless null models. The key insights from these data analyses add to the growing literature on quantitative characterizations of urban zones, and may help uncover the underlying mechanics responsible for growth.

Suggested Citation

  • Perlada, Camille D. & Orden, Alfiero K. & Cirunay, Michelle T. & Batac, Rene C., 2021. "Quantifying the organization of urban elements through the statistical distributions of their spatial spreading metrics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 568(C).
  • Handle: RePEc:eee:phsmap:v:568:y:2021:i:c:s0378437120310153
    DOI: 10.1016/j.physa.2020.125717
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120310153
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.125717?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jesse M. Shapiro, 2006. "Smart Cities: Quality of Life, Productivity, and the Growth Effects of Human Capital," The Review of Economics and Statistics, MIT Press, vol. 88(2), pages 324-335, May.
    2. Michelle T. Cirunay & Rene C. Batac, 2018. "Statistical signatures of the spatial imprints of road network growth," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 29(10), pages 1-16, October.
    3. repec:cai:popine:popu_p1998_10n1_0240 is not listed on IDEAS
    4. A. Paolo Masucci & Carlos Molinero, 2016. "Robustness and closeness centrality for self-organized and planned cities," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 89(2), pages 1-8, February.
    5. Jeff Alstott & Ed Bullmore & Dietmar Plenz, 2014. "powerlaw: A Python Package for Analysis of Heavy-Tailed Distributions," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-11, January.
    6. A. Paolo Masucci & Carlos Molinero, 2016. "Robustness and closeness centrality for self-organized and planned cities," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 89(2), pages 1-8, February.
    7. A. P. Masucci & D. Smith & A. Crooks & M. Batty, 2009. "Random planar graphs and the London street network," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(2), pages 259-271, September.
    8. Yanguang Chen & Jiejing Wang, 2016. "Describing Urban Evolution with the Fractal Parameters Based on Area-Perimeter Allometry," Discrete Dynamics in Nature and Society, Hindawi, vol. 2016, pages 1-14, February.
    9. Lämmer, Stefan & Gehlsen, Björn & Helbing, Dirk, 2006. "Scaling laws in the spatial structure of urban road networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(1), pages 89-95.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Batac, Rene C. & Cirunay, Michelle T., 2022. "Shortest paths along urban road network peripheries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    2. Hernandez, Edward Russel & Sy, Patricia Breanne & Cirunay, Michelle T. & Batac, Rene C., 2024. "Power-law distributions of urban tree cover," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 643(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aybike Ulusan & Ozlem Ergun, 2018. "Restoration of services in disrupted infrastructure systems: A network science approach," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-28, February.
    2. Batac, Rene C. & Cirunay, Michelle T., 2022. "Shortest paths along urban road network peripheries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    3. Brinkley, Catherine & Raj, Subhashni, 2022. "Perfusion and urban thickness: The shape of cities," Land Use Policy, Elsevier, vol. 115(C).
    4. Sergio Porta & Vito Latora & Fahui Wang & Salvador Rueda & Emanuele Strano & Salvatore Scellato & Alessio Cardillo & Eugenio Belli & Francisco CÃ rdenas & Berta Cormenzana & Laura Latora, 2012. "Street Centrality and the Location of Economic Activities in Barcelona," Urban Studies, Urban Studies Journal Limited, vol. 49(7), pages 1471-1488, May.
    5. Zhang, Tong & Zeng, Zhe & Jia, Tao & Li, Jing, 2016. "Examining the amenability of urban street networks for locating facilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 469-479.
    6. Marc Barthelemy, 2017. "From paths to blocks: New measures for street patterns," Environment and Planning B, , vol. 44(2), pages 256-271, March.
    7. Hernandez, Edward Russel & Sy, Patricia Breanne & Cirunay, Michelle T. & Batac, Rene C., 2024. "Power-law distributions of urban tree cover," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 643(C).
    8. Benita, Francisco & Piliouras, Georgios, 2020. "Location, location, usage: How different notions of centrality can predict land usage in Singapore," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    9. Shiguang Wang & Dexin Yu & Mei-Po Kwan & Huxing Zhou & Yongxing Li & Hongzhi Miao, 2019. "The Evolution and Growth Patterns of the Road Network in a Medium-Sized Developing City: A Historical Investigation of Changchun, China, from 1912 to 2017," Sustainability, MDPI, vol. 11(19), pages 1-25, September.
    10. Le Zhang & Xiaoxiao Xu & Yanlong Guo, 2022. "Comprehensive Evaluation of the Implementation Effect of Commercial Street Quality Improvement Based on AHP-Entropy Weight Method—Taking Hefei Shuanggang Old Street as an Example," Land, MDPI, vol. 11(11), pages 1-19, November.
    11. Wang, Shiguang & Yu, Dexin & Lin, Ciyun & Shang, Qiang & Lin, Yu, 2018. "How to connect with each other between roads? An empirical study of urban road connection properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 775-787.
    12. Rui Ding & Norsidah Ujang & Hussain Bin Hamid & Mohd Shahrudin Abd Manan & Rong Li & Safwan Subhi Mousa Albadareen & Ashkan Nochian & Jianjun Wu, 2019. "Application of Complex Networks Theory in Urban Traffic Network Researches," Networks and Spatial Economics, Springer, vol. 19(4), pages 1281-1317, December.
    13. Cirunay, Michelle T. & Batac, Rene C., 2023. "Evolution of the periphery of a self-organized road network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).
    14. Gerald A. Carlino, 2014. "New ideas in the air: cities and economic growth," Business Review, Federal Reserve Bank of Philadelphia, issue Q4, pages 1-7.
    15. Oliver Falck & Michael Fritsch & Stephan Heblich & Anne Otto, 2018. "Music in the air: estimating the social return to cultural amenities," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 42(3), pages 365-391, August.
    16. Gregorio Gimenez & Luis Vargas-Montoya, 2021. "ICT Use and Successful Learning: The Role of the Stock of Human Capital," Mathematics, MDPI, vol. 9(14), pages 1-15, July.
    17. Hans R. A. Koster & Jos N. van Ommeren & Piet Rietveld, 2016. "Historic amenities, income and sorting of households," Journal of Economic Geography, Oxford University Press, vol. 16(1), pages 203-236.
    18. Niclas Berggren & Mikael Elinder, 2012. "Is tolerance good or bad for growth?," Public Choice, Springer, vol. 150(1), pages 283-308, January.
    19. Carlino, Gerald & Kerr, William R., 2015. "Agglomeration and Innovation," Handbook of Regional and Urban Economics, in: Gilles Duranton & J. V. Henderson & William C. Strange (ed.), Handbook of Regional and Urban Economics, edition 1, volume 5, chapter 0, pages 349-404, Elsevier.
    20. Becker, Jörg & Distel, Bettina & Grundmann, Matthias & Hupperich, Thomas & Kersting, Norbert & Löschel, Andreas & Parreira do Amaral, Marcelo & Scholta, Hendrik, 2021. "Challenges and potentials of digitalisation for small and mid-sized towns: Proposition of a transdisciplinary research agenda," ERCIS Working Papers 36, University of Münster, European Research Center for Information Systems (ERCIS).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:568:y:2021:i:c:s0378437120310153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.