IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v561y2021ics0378437120306609.html
   My bibliography  Save this article

Altering control modes of complex networks by reversing edges

Author

Listed:
  • Zhang, Xizhe
  • Zhu, Yuyan
  • Zhao, Yongkang

Abstract

Controlling complex networks are one of the ultimate goals in network science. Previous works have found there exist two distinct control modes when controlling the dense networks: distributed and centralized modes. How to change the control mode of a network is a challenging problem. This paper presents an efficient algorithm to alter a network from distributed mode to centralized mode by reversing the direction of a few edges. We first analyze four possible cases when reversing an edge and then design an efficient algorithm to change the control mode of a network. We prove that our algorithm does not affect the control scheme of the network after mode change. We evaluate the performance of our algorithm on both synthetic and real networks. The results show that the control mode of most networks can be easily changed by reversing very few edges. Furthermore, the number of the possible driver nodes of the network after mode change is dramatically decreased, which means these networks are easier to control. Our algorithm provides the ability to design the desired control mode of a network for different control scenarios, which may be used in many applications.

Suggested Citation

  • Zhang, Xizhe & Zhu, Yuyan & Zhao, Yongkang, 2021. "Altering control modes of complex networks by reversing edges," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
  • Handle: RePEc:eee:phsmap:v:561:y:2021:i:c:s0378437120306609
    DOI: 10.1016/j.physa.2020.125249
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120306609
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.125249?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang-Yu Liu & Jean-Jacques Slotine & Albert-László Barabási, 2011. "Controllability of complex networks," Nature, Nature, vol. 473(7346), pages 167-173, May.
    2. Piao, Xiufeng & Lv, Tianyang & Zhang, Xizhe & Ma, Hui, 2015. "Strategy for community control of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 98-108.
    3. Xizhe Zhang & Tianyang Lv & XueYing Yang & Bin Zhang, 2014. "Structural Controllability of Complex Networks Based on Preferential Matching," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-8, November.
    4. Zhang, Xizhe & Li, Qian, 2019. "Altering control modes of complex networks based on edge removal," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 185-193.
    5. Xizhe Zhang & Huaizhen Wang & Tianyang Lv, 2017. "Efficient target control of complex networks based on preferential matching," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-10, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Xiaoyao & Liang, Yongqing & Wang, Xiaomeng & Jia, Tao, 2021. "The network asymmetry caused by the degree correlation and its effect on the bimodality in control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xizhe & Li, Qian, 2019. "Altering control modes of complex networks based on edge removal," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 185-193.
    2. Yu, Xiaoyao & Liang, Yongqing & Wang, Xiaomeng & Jia, Tao, 2021. "The network asymmetry caused by the degree correlation and its effect on the bimodality in control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    3. Andreas Koulouris & Ioannis Katerelos & Theodore Tsekeris, 2013. "Multi-Equilibria Regulation Agent-Based Model of Opinion Dynamics in Social Networks," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 11(1), pages 51-70.
    4. He, He & Yang, Bo & Hu, Xiaoming, 2016. "Exploring community structure in networks by consensus dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 342-353.
    5. Ellinas, Christos & Allan, Neil & Johansson, Anders, 2016. "Project systemic risk: Application examples of a network model," International Journal of Production Economics, Elsevier, vol. 182(C), pages 50-62.
    6. Yang, Hyeonchae & Jung, Woo-Sung, 2016. "Structural efficiency to manipulate public research institution networks," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 21-32.
    7. Meng, Tao & Duan, Gaopeng & Li, Aming & Wang, Long, 2023. "Control energy scaling for target control of complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    8. Tao Jia & Robert F Spivey & Boleslaw Szymanski & Gyorgy Korniss, 2015. "An Analysis of the Matching Hypothesis in Networks," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-12, June.
    9. Yang, Xu-Hua & Lou, Shun-Li & Chen, Guang & Chen, Sheng-Yong & Huang, Wei, 2013. "Scale-free networks via attaching to random neighbors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3531-3536.
    10. Zhang, Rui & Wang, Xiaomeng & Cheng, Ming & Jia, Tao, 2019. "The evolution of network controllability in growing networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 257-266.
    11. Wouter Vermeer & Otto Koppius & Peter Vervest, 2018. "The Radiation-Transmission-Reception (RTR) model of propagation: Implications for the effectiveness of network interventions," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-21, December.
    12. Chen, Shi-Ming & Xu, Yun-Fei & Nie, Sen, 2017. "Robustness of network controllability in cascading failure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 536-539.
    13. Xizhe Zhang & Huaizhen Wang & Tianyang Lv, 2017. "Efficient target control of complex networks based on preferential matching," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-10, April.
    14. Pang, Shao-Peng & Hao, Fei, 2018. "Effect of interaction strength on robustness of controlling edge dynamics in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 246-257.
    15. Paterakis, Nikolaos G. & Erdinç, Ozan & Catalão, João P.S., 2017. "An overview of Demand Response: Key-elements and international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 871-891.
    16. Xiao, Guanping & Zheng, Zheng & Wang, Haoqin, 2017. "Evolution of Linux operating system network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 249-258.
    17. Gennady Ougolnitsky & Olga Gorbaneva, 2022. "Sustainable Management in Active Networks," Mathematics, MDPI, vol. 10(16), pages 1-22, August.
    18. Hiroyasu Inoue, 2016. "Controllability Analyses on Firm Networks Based on Comprehensive Data," Papers 1604.01322, arXiv.org.
    19. Xu, Shuang & Wang, Pei, 2017. "Identifying important nodes by adaptive LeaderRank," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 654-664.
    20. Kang, Xinyu & Wang, Minxi & Chen, Lu & Li, Xin, 2023. "Supply risk propagation of global copper industry chain based on multi-layer complex network," Resources Policy, Elsevier, vol. 85(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:561:y:2021:i:c:s0378437120306609. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.