IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v557y2020ics0378437120304441.html
   My bibliography  Save this article

Resistance induced P-bifurcation and Ghost-Stochastic resonance of a hybrid energy harvester under colored noise

Author

Listed:
  • Fezeu, G.J.
  • Fokou, I.S. Mokem
  • Buckjohn, C. Nono Dueyou
  • Siewe Siewe, M.
  • Tchawoua, C.

Abstract

In this paper, a hybrid energy harvester using two mechanisms of transduction namely piezoelectric and electromagnetic and subjected to the colored noise is investigated. Using the stochastic averaging method, the Fokker−Planck−Kolmogorov equation of the system is constructed whose the statistic response in the stationary state is the probability density. The mean square voltage and current are obtained for different values of the linear and nonlinear resistance as the output power generated by piezoelectric circuit and electromagnetic circuit. The stability of the harvester is investigated by using probability approach. In addition, combining the colored noise and coherence excitation, the Ghost-Stochastic resonance is observed through the mean residence time and improve the amount of energy harvested by the scavenger. The agreements between the analytical method and those obtained numerically validate the effectiveness of analytical investigations. The results obtained in this manuscript shows the interest to use the load resistance exhibiting the nonlinearity in this research field and also, these results reveal that, while the natural frequency is absent in the coherent excitation, the system performance can be improved for a certain value of noise intensity.

Suggested Citation

  • Fezeu, G.J. & Fokou, I.S. Mokem & Buckjohn, C. Nono Dueyou & Siewe Siewe, M. & Tchawoua, C., 2020. "Resistance induced P-bifurcation and Ghost-Stochastic resonance of a hybrid energy harvester under colored noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
  • Handle: RePEc:eee:phsmap:v:557:y:2020:i:c:s0378437120304441
    DOI: 10.1016/j.physa.2020.124857
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120304441
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.124857?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mokem Fokou, I.S. & Nono Dueyou Buckjohn, C. & Siewe Siewe, M. & Tchawoua, C., 2016. "Probabilistic behavior analysis of a sandwiched buckled beam under Gaussian white noise with energy harvesting perspectives," Chaos, Solitons & Fractals, Elsevier, vol. 92(C), pages 101-114.
    2. Liu, Di & Xu, Yong & Li, Junlin, 2017. "Probabilistic response analysis of nonlinear vibration energy harvesting system driven by Gaussian colored noise," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 806-812.
    3. Foupouapouognigni, O. & Nono Dueyou Buckjohn, C. & Siewe Siewe, M. & Tchawoua, C., 2018. "Hybrid electromagnetic and piezoelectric vibration energy harvester with Gaussian white noise excitation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 346-360.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Tao & Cao, Qingjie, 2020. "Dynamics and high-efficiency of a novel multi-stable energy harvesting system," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    2. Guo, Shu-Ling & Yang, Yong-Ge & Sun, Ya-Hui, 2021. "Stochastic response of an energy harvesting system with viscoelastic element under Gaussian white noise excitation," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    3. Dongmei Huang & Shengxi Zhou & Zhichun Yang, 2019. "Resonance Mechanism of Nonlinear Vibrational Multistable Energy Harvesters under Narrow-Band Stochastic Parametric Excitations," Complexity, Hindawi, vol. 2019, pages 1-20, December.
    4. Khaje khabaz, Moahamad & Eftekhari, S. Ali & Hashemian, Mohamad & Toghraie, Davood, 2020. "Optimal vibration control of multi-layer micro-beams actuated by piezoelectric layer based on modified couple stress and surface stress elasticity theories," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 546(C).
    5. Tingting Zhang & Yanfei Jin, 2024. "Stochastic optimal control of a tri-stable energy harvester with the P-SSHI circuit under colored noise," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(1), pages 1-13, January.
    6. Liu, Di & Xu, Yong & Li, Junlin, 2017. "Probabilistic response analysis of nonlinear vibration energy harvesting system driven by Gaussian colored noise," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 806-812.
    7. Deng, Hang & Ye, Jimin & Huang, Dongmei, 2023. "Design and analysis of a galloping energy harvester with V-shape spring structure under Gaussian white noise," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    8. Liu, Di & Li, Junlin & Meng, Yu, 2019. "Probabilistic response analysis for a class of nonlinear vibro-impact oscillator with bilateral constraints under colored noise excitation," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 179-188.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:557:y:2020:i:c:s0378437120304441. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.