IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v553y2020ics037843712030056x.html
   My bibliography  Save this article

Numerical modeling and analysis of bioconvection on MHD flow due to an upper paraboloid surface of revolution

Author

Listed:
  • Khan, Mair
  • Salahuddin, T.
  • Malik, M.Y.
  • Alqarni, M.S.
  • Alqahtani, A.M.

Abstract

This article gives brief summary about the boundary layer flow characteristics of magnetic generalized Newtonian fluid due to a paraboloid revolution under bioconvection and chemical reactive species. The nanofluid model utilized in this work includes the behavior of Brownian motion and thermophoresis. The differential equations can be determined by a similarity solution. The determined ordinary differential equations have been solved numerically by fifth order Runge–Kutta Fehlberg method-based shooting technique. The behavior of different physical controlling dimensionless parameters on the base flow velocity, temperature, concentration, skin friction heat and mass transfer rates are analyzed numerically and graphically. We observed that the velocity, temperature and concentration profile reduce for increasing values of Hartmann number, Weissenberg number, wall thickness, stretching index, bioconvection, Prandtl number, Lewis number and Brownian motions whilst behavior is noticed for power law index. Moreover, for increases the values of Brownian and thermophoresis parameter the temperature profile shown increasing behavior. Comparison has been with represents date and found that the results have good agreement.

Suggested Citation

  • Khan, Mair & Salahuddin, T. & Malik, M.Y. & Alqarni, M.S. & Alqahtani, A.M., 2020. "Numerical modeling and analysis of bioconvection on MHD flow due to an upper paraboloid surface of revolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
  • Handle: RePEc:eee:phsmap:v:553:y:2020:i:c:s037843712030056x
    DOI: 10.1016/j.physa.2020.124231
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843712030056X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.124231?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rehman, Khalil Ur, 2019. "Communication on partially heated Aluminum 6063-T83 enclosure: Finite element visualization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Biswas, Nirmalendu & Mandal, Dipak Kumar & Manna, Nirmal K. & Benim, Ali Cemal, 2023. "Enhanced energy and mass transport dynamics in a thermo-magneto-bioconvective porous system containing oxytactic bacteria and nanoparticles: cleaner energy application," Energy, Elsevier, vol. 263(PB).
    2. Muhammad Bilal Hafeez & Wojciech Sumelka & Umar Nazir & Hijaz Ahmad & Sameh Askar, 2021. "Mechanism of Solute and Thermal Characteristics in a Casson Hybrid Nanofluid Based with Ethylene Glycol Influenced by Soret and Dufour Effects," Energies, MDPI, vol. 14(20), pages 1-19, October.
    3. Chu, Yu-Ming & Shankaralingappa, B.M. & Gireesha, B.J. & Alzahrani, Faris & Khan, M. Ijaz & Khan, Sami Ullah, 2022. "Combined impact of Cattaneo-Christov double diffusion and radiative heat flux on bio-convective flow of Maxwell liquid configured by a stretched nano-material surface," Applied Mathematics and Computation, Elsevier, vol. 419(C).
    4. Mamta Kapoor & Nehad Ali Shah & Salman Saleem & Wajaree Weera, 2022. "An Analytical Approach for Fractional Hyperbolic Telegraph Equation Using Shehu Transform in One, Two and Three Dimensions," Mathematics, MDPI, vol. 10(12), pages 1-26, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:553:y:2020:i:c:s037843712030056x. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.