IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v549y2020ics0378437119322460.html
   My bibliography  Save this article

Stationary distribution of stochastic NP ecological model under regime switching

Author

Listed:
  • Wang, Huazheng
  • Jiang, Daqing
  • Hayat, Tasawar
  • Alsaedi, Ahmed
  • Ahmad, Bashir

Abstract

Marine ecosystem is inevitably disturbed by random factors. This article discusses a nutrient–phytoplankton (NP) model with TPP which is disturbed by both white and telegraph noises. Firstly, we get sufficient conditions for the existence of ergodic stationary distribution by constructing a suitable stochastic Lyapunov function with regime switching. And then we establish sufficient conditions for extinction of the phytoplankton. Finally, the results of this paper are verified by numerical simulation.

Suggested Citation

  • Wang, Huazheng & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2020. "Stationary distribution of stochastic NP ecological model under regime switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
  • Handle: RePEc:eee:phsmap:v:549:y:2020:i:c:s0378437119322460
    DOI: 10.1016/j.physa.2019.124064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119322460
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.124064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Yuguo & Jiang, Daqing & Wang, Shuai, 2014. "Stationary distribution of a stochastic SIS epidemic model with vaccination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 187-197.
    2. Yu, Xingwang & Yuan, Sanling & Zhang, Tonghua, 2019. "Survival and ergodicity of a stochastic phytoplankton–zooplankton model with toxin-producing phytoplankton in an impulsive polluted environment," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 249-264.
    3. Ji, Chunyan & Jiang, Daqing & Shi, Ningzhong, 2011. "Multigroup SIR epidemic model with stochastic perturbation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(10), pages 1747-1762.
    4. Lahrouz, Aadil & Omari, Lahcen, 2013. "Extinction and stationary distribution of a stochastic SIRS epidemic model with non-linear incidence," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 960-968.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nguiwa, Tchule & Kolaye, Gabriel Guilsou & Justin, Mibaile & Moussa, Djaouda & Betchewe, Gambo & Mohamadou, Alidou, 2021. "Dynamic study of SIAISQVR−B fractional-order cholera model with control strategies in Cameroon Far North Region," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    2. Xu, Chaoqun & Chen, Qiucun, 2024. "The effects of additional food and environmental stochasticity on the asymptotic properties of a nutrient–phytoplankton model," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    3. Yuanlin Ma & Xingwang Yu, 2022. "Stationary Probability Density Analysis for the Randomly Forced Phytoplankton–Zooplankton Model with Correlated Colored Noises," Mathematics, MDPI, vol. 10(14), pages 1-11, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Zhenfeng & Zhang, Xinhong & Jiang, Daqing, 2019. "Dynamics of an avian influenza model with half-saturated incidence," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 399-416.
    2. Zhou, Yanli & Yuan, Sanling & Zhao, Dianli, 2016. "Threshold behavior of a stochastic SIS model with Le´vy jumps," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 255-267.
    3. Liu, Qun & Jiang, Daqing & Shi, Ningzhong & Hayat, Tasawar & Ahmad, Bashir, 2017. "Stationary distribution and extinction of a stochastic SEIR epidemic model with standard incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 476(C), pages 58-69.
    4. Hussain, Ghulam & Khan, Amir & Zahri, Mostafa & Zaman, Gul, 2022. "Ergodic stationary distribution of stochastic epidemic model for HBV with double saturated incidence rates and vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    5. Li, Dongxi & Cui, Xiaowei, 2017. "Dynamics of virus infection model with nonlytic immune response induced by stochastic noise," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 124-132.
    6. Zhang, Xiao-Bing & Huo, Hai-Feng & Xiang, Hong & Shi, Qihong & Li, Dungang, 2017. "The threshold of a stochastic SIQS epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 362-374.
    7. Liu, Qun & Jiang, Daqing & Shi, Ningzhong & Hayat, Tasawar & Alsaedi, Ahmed, 2017. "Stationary distribution and extinction of a stochastic SIRS epidemic model with standard incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 510-517.
    8. Teng, Zhidong & Wang, Lei, 2016. "Persistence and extinction for a class of stochastic SIS epidemic models with nonlinear incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 507-518.
    9. Zhao, Dianli & Zhang, Tiansi & Yuan, Sanling, 2016. "The threshold of a stochastic SIVS epidemic model with nonlinear saturated incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 372-379.
    10. Settati, A. & Lahrouz, A. & Zahri, M. & Tridane, A. & El Fatini, M. & El Mahjour, H. & Seaid, M., 2021. "A stochastic threshold to predict extinction and persistence of an epidemic SIRS system with a general incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    11. Bao, Kangbo & Zhang, Qimin & Rong, Libin & Li, Xining, 2019. "Dynamics of an imprecise SIRS model with Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 489-506.
    12. Zhang, Xiao-Bing & Chang, Suqin & Shi, Qihong & Huo, Hai-Feng, 2018. "Qualitative study of a stochastic SIS epidemic model with vertical transmission," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 805-817.
    13. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2018. "Stationary distribution and extinction of a stochastic HIV-1 model with Beddington–DeAngelis infection rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 414-426.
    14. Berrhazi, Badreddine & El Fatini, Mohamed & Lahrouz, Aadil & Settati, Adel & Taki, Regragui, 2018. "A stochastic SIRS epidemic model with a general awareness-induced incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 968-980.
    15. Cao, Zhongwei & Feng, Wei & Wen, Xiangdan & Zu, Li, 2019. "Dynamical behavior of a stochastic SEI epidemic model with saturation incidence and logistic growth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 894-907.
    16. Khan, Tahir & Khan, Amir & Zaman, Gul, 2018. "The extinction and persistence of the stochastic hepatitis B epidemic model," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 123-128.
    17. M. Hashem Pesaran & Cynthia Fan Yang, 2022. "Matching theory and evidence on Covid‐19 using a stochastic network SIR model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1204-1229, September.
    18. Jia, Pingqi & Wang, Chao & Zhang, Gaoyu & Ma, Jianfeng, 2019. "A rumor spreading model based on two propagation channels in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 342-353.
    19. Zhiming Li & Zhidong Teng, 2019. "Analysis of uncertain SIS epidemic model with nonlinear incidence and demography," Fuzzy Optimization and Decision Making, Springer, vol. 18(4), pages 475-491, December.
    20. Gamboa, M. & López-García, M. & Lopez-Herrero, M.J., 2024. "On the exact and population bi-dimensional reproduction numbers in a stochastic SVIR model with imperfect vaccine," Applied Mathematics and Computation, Elsevier, vol. 468(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:549:y:2020:i:c:s0378437119322460. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.