IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v545y2020ics0378437119321211.html
   My bibliography  Save this article

Global dynamic analysis of a model for vector-borne diseases on bipartite networks

Author

Listed:
  • Zhang, Ruixia

Abstract

In this paper, an SIS-SI model on bipartite networks for vector-borne disease is developed. The basic reproduction number R0 is identified and analyzed. The global dynamics are completely determined by the reproduction number R0. It is shown that if R0<1, the disease-free equilibrium is globally asymptotically stable. If R0>1, there is a unique endemic equilibrium which is globally asymptotically stable. Finally, numerical simulations are performed to validate the theoretical results and reveal the influence of network structure on basic reproduction number, the transmission scale and propagation speed.

Suggested Citation

  • Zhang, Ruixia, 2020. "Global dynamic analysis of a model for vector-borne diseases on bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
  • Handle: RePEc:eee:phsmap:v:545:y:2020:i:c:s0378437119321211
    DOI: 10.1016/j.physa.2019.123813
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119321211
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.123813?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ben Adams & Durrell D Kapan, 2009. "Man Bites Mosquito: Understanding the Contribution of Human Movement to Vector-Borne Disease Dynamics," PLOS ONE, Public Library of Science, vol. 4(8), pages 1-10, August.
    2. Zhang, Ruixia & Li, Deyu & Jin, Zhen, 2015. "Dynamic analysis of a delayed model for vector-borne diseases on bipartite networks," Applied Mathematics and Computation, Elsevier, vol. 263(C), pages 342-352.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chuangxia Huang & Jie Cao & Fenghua Wen & Xiaoguang Yang, 2016. "Stability Analysis of SIR Model with Distributed Delay on Complex Networks," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-22, August.
    2. Shuli Zhou & Suhong Zhou & Lin Liu & Meng Zhang & Min Kang & Jianpeng Xiao & Tie Song, 2019. "Examining the Effect of the Environment and Commuting Flow from/to Epidemic Areas on the Spread of Dengue Fever," IJERPH, MDPI, vol. 16(24), pages 1-13, December.
    3. Tiago França Melo De Lima & Raquel Martins Lana & Tiago Garcia De Senna Carneiro & Cláudia Torres Codeço & Gabriel Souza Machado & Lucas Saraiva Ferreira & Líliam César De Castro Medeiros & Clodoveu A, 2016. "DengueME: A Tool for the Modeling and Simulation of Dengue Spatiotemporal Dynamics," IJERPH, MDPI, vol. 13(9), pages 1-21, September.
    4. Jue Wang & Mei-Po Kwan & Yanwei Chai, 2018. "An Innovative Context-Based Crystal-Growth Activity Space Method for Environmental Exposure Assessment: A Study Using GIS and GPS Trajectory Data Collected in Chicago," IJERPH, MDPI, vol. 15(4), pages 1-24, April.
    5. Liu, Yan & Mei, Jingling & Li, Wenxue, 2018. "Stochastic stabilization problem of complex networks without strong connectedness," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 304-315.
    6. Renaud Marti & Zhichao Li & Thibault Catry & Emmanuel Roux & Morgan Mangeas & Pascal Handschumacher & Jean Gaudart & Annelise Tran & Laurent Demagistri & Jean-François Faure & José Joaquín Carvajal & , 2020. "A Mapping Review on Urban Landscape Factors of Dengue Retrieved from Earth Observation Data, GIS Techniques, and Survey Questionnaires," Post-Print hal-02682042, HAL.
    7. Laperrière, Vincent & Brugger, Katharina & Rubel, Franz, 2016. "Cross-scale modeling of a vector-borne disease, from the individual to the metapopulation: The seasonal dynamics of sylvatic plague in Kazakhstan," Ecological Modelling, Elsevier, vol. 342(C), pages 34-48.
    8. Yuqi Zhang & Hongyan Ren & Runhe Shi, 2022. "Influences of Differentiated Residence and Workplace Location on the Identification of Spatiotemporal Patterns of Dengue Epidemics: A Case Study in Guangzhou, China," IJERPH, MDPI, vol. 19(20), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:545:y:2020:i:c:s0378437119321211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.