IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v542y2020ics0378437119315730.html
   My bibliography  Save this article

A new analysis of a partial differential equation arising in biology and population genetics via semi analytical techniques

Author

Listed:
  • Agarwal, P.
  • Deni̇z, S.
  • Jain, S.
  • Alderremy, A.A.
  • Aly, Shaban

Abstract

In this work, we propose a new optimal perturbation iteration method for solving the generalized Fitzhugh–Nagumo equation with time-dependent coefficients. This research reveals that the new proposed technique, with the aid of symbolic computations, provides a straightforward and impressive mathematical tool for solving nonlinear partial differential equations. Implementing this method to Fitzhugh–Nagumo equation illustrates its potency. Convergence analysis also shows that OPIM, unlike many other methods in literature, converges fast to exact analytical solutions of the nonlinear problems at lower order of approximations.

Suggested Citation

  • Agarwal, P. & Deni̇z, S. & Jain, S. & Alderremy, A.A. & Aly, Shaban, 2020. "A new analysis of a partial differential equation arising in biology and population genetics via semi analytical techniques," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
  • Handle: RePEc:eee:phsmap:v:542:y:2020:i:c:s0378437119315730
    DOI: 10.1016/j.physa.2019.122769
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119315730
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.122769?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abdon Atangana & Aydin Secer, 2013. "The Time-Fractional Coupled-Korteweg-de-Vries Equations," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-8, March.
    2. Khader, M.M. & Saad, K.M., 2018. "A numerical approach for solving the fractional Fisher equation using Chebyshev spectral collocation method," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 169-177.
    3. Arqub, Omar Abu & Maayah, Banan, 2018. "Numerical solutions of integrodifferential equations of Fredholm operator type in the sense of the Atangana–Baleanu fractional operator," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 117-124.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deniz, Sinan, 2021. "Optimal perturbation iteration method for solving fractional FitzHugh-Nagumo equation," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    2. Izadi, Mohammad & Roul, Pradip, 2022. "Spectral semi-discretization algorithm for a class of nonlinear parabolic PDEs with applications," Applied Mathematics and Computation, Elsevier, vol. 429(C).
    3. Mondal, Argha & Mistri, Kshitish Ch. & Aziz-Alaoui, M.A. & Upadhyay, Ranjit Kumar, 2021. "An analytical scheme on complete integrability of 2D biophysical excitable systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El-Dessoky Ahmed, M.M. & Altaf Khan, Muhammad, 2020. "Modeling and analysis of the polluted lakes system with various fractional approaches," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    2. Singh, C.S. & Singh, Harendra & Singh, Somveer & Kumar, Devendra, 2019. "An efficient computational method for solving system of nonlinear generalized Abel integral equations arising in astrophysics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1440-1448.
    3. Khader, M.M. & Inc, Mustafa, 2021. "Numerical technique based on the interpolation with Lagrange polynomials to analyze the fractional variable-order mathematical model of the hepatitis C with different types of virus genome," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    4. Haifa Bin Jebreen, 2024. "A Highly Accurate Computational Approach to Solving the Diffusion Equation of a Fractional Order," Mathematics, MDPI, vol. 12(13), pages 1-15, June.
    5. Khater, Mostafa M.A. & Mohamed, Mohamed S. & Attia, Raghda A.M., 2021. "On semi analytical and numerical simulations for a mathematical biological model; the time-fractional nonlinear Kolmogorov–Petrovskii–Piskunov (KPP) equation," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    6. H. Çerdik Yaslan, 2021. "Numerical solution of the nonlinear conformable space–time fractional partial differential equations," Indian Journal of Pure and Applied Mathematics, Springer, vol. 52(2), pages 407-419, June.
    7. Hari Mohan Srivastava & Khaled M. Saad, 2020. "A Comparative Study of the Fractional-Order Clock Chemical Model," Mathematics, MDPI, vol. 8(9), pages 1-14, August.
    8. Zúñiga-Aguilar, C.J. & Gómez-Aguilar, J.F. & Escobar-Jiménez, R.F. & Romero-Ugalde, H.M., 2019. "A novel method to solve variable-order fractional delay differential equations based in lagrange interpolations," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 266-282.
    9. Qureshi, Sania & Yusuf, Abdullahi, 2019. "Modeling chickenpox disease with fractional derivatives: From caputo to atangana-baleanu," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 111-118.
    10. Yadav, Swati & Pandey, Rajesh K., 2020. "Numerical approximation of fractional burgers equation with Atangana–Baleanu derivative in Caputo sense," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    11. Owyed, Saud & Abdou, M.A. & Abdel-Aty, Abdel-Haleem & Alharbi, W. & Nekhili, Ramzi, 2020. "Numerical and approximate solutions for coupled time fractional nonlinear evolutions equations via reduced differential transform method," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    12. Veeresha, P. & Prakasha, D.G., 2019. "A novel technique for (2+1)-dimensional time-fractional coupled Burgers equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 166(C), pages 324-345.
    13. Abu Arqub, Omar & Al-Smadi, Mohammed, 2020. "An adaptive numerical approach for the solutions of fractional advection–diffusion and dispersion equations in singular case under Riesz’s derivative operator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    14. Arqub, Omar Abu & Maayah, Banan, 2019. "Fitted fractional reproducing kernel algorithm for the numerical solutions of ABC – Fractional Volterra integro-differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 394-402.
    15. Djennadi, Smina & Shawagfeh, Nabil & Abu Arqub, Omar, 2021. "A fractional Tikhonov regularization method for an inverse backward and source problems in the time-space fractional diffusion equations," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    16. Kumar, Kamlesh & Pandey, Rajesh K. & Yadav, Swati, 2019. "Finite difference scheme for a fractional telegraph equation with generalized fractional derivative terms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    17. Sania Qureshi & Norodin A. Rangaig & Dumitru Baleanu, 2019. "New Numerical Aspects of Caputo-Fabrizio Fractional Derivative Operator," Mathematics, MDPI, vol. 7(4), pages 1-14, April.
    18. Qureshi, Sania & Memon, Zaib-un-Nisa, 2020. "Monotonically decreasing behavior of measles epidemic well captured by Atangana–Baleanu–Caputo fractional operator under real measles data of Pakistan," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    19. Al-Smadi, Mohammed & Arqub, Omar Abu & Zeidan, Dia, 2021. "Fuzzy fractional differential equations under the Mittag-Leffler kernel differential operator of the ABC approach: Theorems and applications," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    20. Saad, Khaled M., 2021. "Fractal-fractional Brusselator chemical reaction," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:542:y:2020:i:c:s0378437119315730. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.