IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v540y2020ics0378437119317546.html
   My bibliography  Save this article

Fake news detection within online social media using supervised artificial intelligence algorithms

Author

Listed:
  • Ozbay, Feyza Altunbey
  • Alatas, Bilal

Abstract

Along with the development of the Internet, the emergence and widespread adoption of the social media concept have changed the way news is formed and published. News has become faster, less costly and easily accessible with social media. This change has come along with some disadvantages as well. In particular, beguiling content, such as fake news made by social media users, is becoming increasingly dangerous. The fake news problem, despite being introduced for the first time very recently, has become an important research topic due to the high content of social media. Writing fake comments and news on social media is easy for users. The main challenge is to determine the difference between real and fake news. In this paper, a two-step method for identifying fake news on social media has been proposed, focusing on fake news. In the first step of the method, a number of pre-processing is applied to the data set to convert un-structured data sets into the structured data set. The texts in the data set containing the news are represented by vectors using the obtained TF weighting method and Document-Term Matrix. In the second step, twenty-three supervised artificial intelligence algorithms have been implemented in the data set transformed into the structured format with the text mining methods. In this work, an experimental evaluation of the twenty-three intelligent classification methods has been performed within existing public data sets and these classification models have been compared depending on four evaluation metrics.

Suggested Citation

  • Ozbay, Feyza Altunbey & Alatas, Bilal, 2020. "Fake news detection within online social media using supervised artificial intelligence algorithms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
  • Handle: RePEc:eee:phsmap:v:540:y:2020:i:c:s0378437119317546
    DOI: 10.1016/j.physa.2019.123174
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119317546
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.123174?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Yaming & Su, Yanyuan & Weigang, Li & Liu, Haiou, 2018. "Rumor and authoritative information propagation model considering super spreading in complex social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 395-411.
    2. Zhu, Hui & Wu, Heng & Cao, Jin & Fu, Gang & Li, Hui, 2018. "Information dissemination model for social media with constant updates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 469-482.
    3. Hunt Allcott & Matthew Gentzkow, 2017. "Social Media and Fake News in the 2016 Election," NBER Working Papers 23089, National Bureau of Economic Research, Inc.
    4. Bessi, Alessandro, 2017. "On the statistical properties of viral misinformation in online social media," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 459-470.
    5. Hunt Allcott & Matthew Gentzkow, 2017. "Social Media and Fake News in the 2016 Election," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 211-236, Spring.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Mudassar Yamin & Mohib Ullah & Habib Ullah & Basel Katt & Mohammad Hijji & Khan Muhammad, 2022. "Mapping Tools for Open Source Intelligence with Cyber Kill Chain for Adversarial Aware Security," Mathematics, MDPI, vol. 10(12), pages 1-25, June.
    2. Mohammad Zubair Khan & Omar Hussain Alhazmi, 2020. "Study and analysis of unreliable news based on content acquired using ensemble learning (prevalence of fake news on social media)," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 145-153, July.
    3. Kim, Jong Min & Park, Keeyeon Ki-cheon & Mariani, Marcello & Wamba, Samuel Fosso, 2024. "Investigating reviewers' intentions to post fake vs. authentic reviews based on behavioral linguistic features," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    4. Balasubramanian Palani & Sivasankar Elango, 2023. "CTrL-FND: content-based transfer learning approach for fake news detection on social media," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(3), pages 903-918, June.
    5. Li, Ziqi & Shi, Chaoyi & Zhang, Qi & Chu, Tianguang, 2024. "Inferring the source of diffusion in networks under weak observation condition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    6. Cano-Marin, Enrique & Mora-Cantallops, Marçal & Sanchez-Alonso, Salvador, 2023. "The power of big data analytics over fake news: A scientometric review of Twitter as a predictive system in healthcare," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
    7. Mohammad Zubair Khan & Omar Hussain Alhazmi, 0. "Study and analysis of unreliable news based on content acquired using ensemble learning (prevalence of fake news on social media)," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 0, pages 1-9.
    8. Andrea Stevens Karnyoto & Chengjie Sun & Bingquan Liu & Xiaolong Wang, 2022. "TB-BCG: Topic-Based BART Counterfeit Generator for Fake News Detection," Mathematics, MDPI, vol. 10(4), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Talwar, Shalini & Dhir, Amandeep & Kaur, Puneet & Zafar, Nida & Alrasheedy, Melfi, 2019. "Why do people share fake news? Associations between the dark side of social media use and fake news sharing behavior," Journal of Retailing and Consumer Services, Elsevier, vol. 51(C), pages 72-82.
    2. Leopoldo Fergusson & Carlos Molina, 2020. "Facebook Causes Protests," HiCN Working Papers 323, Households in Conflict Network.
    3. Dean Neu & Gregory D. Saxton & Abu S. Rahaman, 2022. "Social Accountability, Ethics, and the Occupy Wall Street Protests," Journal of Business Ethics, Springer, vol. 180(1), pages 17-31, September.
    4. Robbett, Andrea & Matthews, Peter Hans, 2018. "Partisan bias and expressive voting," Journal of Public Economics, Elsevier, vol. 157(C), pages 107-120.
    5. Henrik Skaug Sætra, 2021. "AI in Context and the Sustainable Development Goals: Factoring in the Unsustainability of the Sociotechnical System," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    6. Fathey Mohammed & Nabil Hasan Al-Kumaim & Ahmed Ibrahim Alzahrani & Yousef Fazea, 2023. "The Impact of Social Media Shared Health Content on Protective Behavior against COVID-19," IJERPH, MDPI, vol. 20(3), pages 1-16, January.
    7. Bartosz Wilczek, 2020. "Misinformation and herd behavior in media markets: A cross-national investigation of how tabloids’ attention to misinformation drives broadsheets’ attention to misinformation in political and business," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-22, November.
    8. Joël Cariolle & Yasmine Elkhateeb & Mathilde Maurel, 2022. "(Mis-)information technology: Internet use and perception of democracy in Africa," Documents de travail du Centre d'Economie de la Sorbonne 22010, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    9. Barrera, Oscar & Guriev, Sergei & Henry, Emeric & Zhuravskaya, Ekaterina, 2020. "Facts, alternative facts, and fact checking in times of post-truth politics," Journal of Public Economics, Elsevier, vol. 182(C).
    10. Sumeet Kumar & Binxuan Huang & Ramon Alfonso Villa Cox & Kathleen M. Carley, 2021. "An anatomical comparison of fake-news and trusted-news sharing pattern on Twitter," Computational and Mathematical Organization Theory, Springer, vol. 27(2), pages 109-133, June.
    11. Zazli Lily Wisker & Robert Neil McKie, 2021. "The effect of fake news on anger and negative word-of-mouth: moderating roles of religiosity and conservatism," Journal of Marketing Analytics, Palgrave Macmillan, vol. 9(2), pages 144-153, June.
    12. Roger D. Magarey & Christina M. Trexler, 2020. "Information: a missing component in understanding and mitigating social epidemics," Palgrave Communications, Palgrave Macmillan, vol. 7(1), pages 1-11, December.
    13. Christoph March & Ina Schieferdecker, 2021. "Technological Sovereignty as Ability, Not Autarky," CESifo Working Paper Series 9139, CESifo.
    14. Deena A. Isom & Hunter M. Boehme & Toniqua C. Mikell & Stephen Chicoine & Marion Renner, 2021. "Status Threat, Social Concerns, and Conservative Media: A Look at White America and the Alt-Right," Societies, MDPI, vol. 11(3), pages 1-20, July.
    15. Lohse, Johannes & McDonald, Rebecca, 2021. "Absolute groupishness and the demand for information," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242454, Verein für Socialpolitik / German Economic Association.
    16. Seth C. Lewis & Logan Molyneux, 2018. "A Decade of Research on Social Media and Journalism: Assumptions, Blind Spots, and a Way Forward," Media and Communication, Cogitatio Press, vol. 6(4), pages 11-23.
    17. Germano, Fabrizio & Sobbrio, Francesco, 2020. "Opinion dynamics via search engines (and other algorithmic gatekeepers)," Journal of Public Economics, Elsevier, vol. 187(C).
    18. Felix Chopra & Ingar K. Haaland & Christopher Roth, 2019. "Do People Value More Informative News?," CESifo Working Paper Series 8026, CESifo.
    19. Donati, Dante, 2023. "Mobile Internet access and political outcomes: Evidence from South Africa," Journal of Development Economics, Elsevier, vol. 162(C).
    20. Scoles, Brooke & Nicodemo, Catia, 2022. "Doctors’ attitudes toward specific medical conditions," Journal of Economic Behavior & Organization, Elsevier, vol. 204(C), pages 182-199.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:540:y:2020:i:c:s0378437119317546. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.