IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v532y2019ics0378437119310921.html
   My bibliography  Save this article

Multiscale multifractal detrended fluctuation analysis of multivariate time series

Author

Listed:
  • Fan, Qingju
  • Liu, Shuanggui
  • Wang, Kehao

Abstract

This work extends the multivariate multifractal detrended fluctuation analysis(MV-MFDFA) method to multiscale case, named multiscale multivariate multifractal detrended fluctuation analysis (MMV-MFDFA). The benefits of the proposed approach are illustrated by numerical simulations on synthetic multivariate processes. Furthermore, the proposed MMV-MFDFA method is applied to the fractal auto-correlation analysis of six pollutants’ (PM2.5, PM10, SO2, NO2, CO and O3) hourly data in different seasons. The results show that the seasonal periodicity has robust impact on the auto-correlation of pollutants in spring and summer. Besides, we also find that the pollutants in the four seasons possess strong multifractal auto-correlation nature, even after the removal of the seasonal pattern. Finally, the source of multifractality among more than two series is also discussed, and some interesting results are obtained. PM2.5 not only dominates the underlying evolution process in fall and winter, but also is more correlated to the other pollutants than the other ones to each other except in spring. The proposed MMV-MFDFA methodology can provide reliable ways of measuring the fractal auto-correlation properties of multivariate series, and it can be applied to any system with multiple data channels.

Suggested Citation

  • Fan, Qingju & Liu, Shuanggui & Wang, Kehao, 2019. "Multiscale multifractal detrended fluctuation analysis of multivariate time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 532(C).
  • Handle: RePEc:eee:phsmap:v:532:y:2019:i:c:s0378437119310921
    DOI: 10.1016/j.physa.2019.121864
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119310921
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.121864?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gui, Jun & Zheng, Zeyu & Fu, Dianzheng & Fu, Yang & Liu, Zhi, 2021. "Long-term correlations and multifractality of toll-free calls in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    2. Vogl, Markus, 2023. "Hurst exponent dynamics of S&P 500 returns: Implications for market efficiency, long memory, multifractality and financial crises predictability by application of a nonlinear dynamics analysis framewo," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    3. Meo, Marcos M. & Iaconis, Francisco R. & Del Punta, Jessica A. & Delrieux, Claudio A. & Gasaneo, Gustavo, 2024. "Multifractal information on reading eye tracking data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    4. Zhang, Jiao & Li, Youping & Liu, Chunqiong & Wu, Bo & Shi, Kai, 2022. "A study of cross-correlations between PM2.5 and O3 based on Copula and Multifractal methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    5. Li, Shuping & Li, Jianfeng & Lu, Xinsheng & Sun, Yihong, 2022. "Exploring the dynamic nonlinear relationship between crude oil price and implied volatility indices: A new perspective from MMV-MFDFA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    6. Wang, Fang & Han, Guosheng, 2023. "Coupling correlation adaptive detrended analysis for multiple nonstationary series," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    7. Wang, Fang & Wang, Lin & Chen, Yuming, 2022. "Multi-affine visible height correlation analysis for revealing rich structures of fractal time series," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    8. Cao, Guangxi & Xie, Wenhao, 2022. "Detrended multiple moving average cross-correlation analysis and its application in the correlation measurement of stock market in Shanghai, Shenzhen, and Hong Kong," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
    9. Meraz, M. & Alvarez-Ramirez, J. & Rodriguez, E., 2022. "Multivariate rescaled range analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    10. Milena Kojić & Petar Mitić & Marko Dimovski & Jelena Minović, 2021. "Multivariate Multifractal Detrending Moving Average Analysis of Air Pollutants," Mathematics, MDPI, vol. 9(7), pages 1-17, March.
    11. Telli, Şahin & Chen, Hongzhuan & Zhao, Xufeng, 2022. "Detecting multifractality and exposing distributions of local fluctuations: Detrended fluctuation analysis with descriptive statistics pooling," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:532:y:2019:i:c:s0378437119310921. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.