IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v530y2019ics0378437119309276.html
   My bibliography  Save this article

Research on critical characteristics of highway traffic flow based on three phase traffic theory

Author

Listed:
  • Zeng, Jun-Wei
  • Qian, Yong-Sheng
  • Yu, Sen-Bin
  • Wei, Xu-Ting

Abstract

In this paper, based on further development of the rules of Kerner–Klenov–Wolf (KKW) cellular automaton (CA) traffic flow model, we propose a Cellular Automaton model for single and two lane highway traffic flow in the framework of Kerner’s three-phase traffic theory. This model divides the traffic running process into two parts: speed adaption behavior under safety conditions and vehicle disturbances. The free flow, synchronized flow, wide moving jams and different first-order phases between them can be simulated. The results are verified in accordance with the fundamental hypothesis and results of the three-phase flow theory after analyzing the data measured by the virtual probe. In the lane changing possibility and road density figures, it is found that the lane changing possibility of free flow is always greater than that in the synchronized flow. And the lane changing possibility is randomly distributed in a two dimensional region which is consistent with the synchronized flow features. In the areas of the wide moving jams, the lane changing possibility is gradually reduced to 0. The results show that there is a close correlation between phase change and the significant reduction of the lane changing possibility. The lane changing behavior has the dual effect of maintaining the vehicle’s current driving state and inducing the phase transition.

Suggested Citation

  • Zeng, Jun-Wei & Qian, Yong-Sheng & Yu, Sen-Bin & Wei, Xu-Ting, 2019. "Research on critical characteristics of highway traffic flow based on three phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 530(C).
  • Handle: RePEc:eee:phsmap:v:530:y:2019:i:c:s0378437119309276
    DOI: 10.1016/j.physa.2019.121567
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119309276
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.121567?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tian, Tian & Liu, Gang & Hu, Xiaoxi & Bian, Dingding, 2024. "Traffic behavior analysis of the urban expressway ramp based on continuous cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    2. Shang, Xue-Cheng & Li, Xin-Gang & Xie, Dong-Fan & Jia, Bin & Jiang, Rui & Liu, Feng, 2022. "A data-driven two-lane traffic flow model based on cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    3. Wang, Lichao & Yang, Min & Li, Ye & Hou, Yiqi, 2022. "A model of lane-changing intention induced by deceleration frequency in an automatic driving environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    4. Zhou, Shirui & Ling, Shuai & Zhu, Chenqiang & Tian, Junfang, 2022. "Cellular automaton model with the multi-anticipative effect to reproduce the empirical findings of Kerner’s three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    5. Hu, Xiaojian & Lin, Chenxi & Hao, Xiatong & Lu, RuiYing & Liu, TengHui, 2021. "Influence of tidal lane on traffic breakdown and spatiotemporal congested patterns at moving bottleneck in the framework of Kerner’s three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    6. Xizi Cao & Ye Tian & Yan Shen & Tongran Wu & Renfei Li & Xinyu Liu & Amanzheli Yeerken & Yangyang Cui & Yifeng Xue & Aiping Lian, 2021. "Emission Variations of Primary Air Pollutants from Highway Vehicles and Implications during the COVID-19 Pandemic in Beijing, China," IJERPH, MDPI, vol. 18(8), pages 1-12, April.
    7. Kang, Chengjun & Qian, Yongsheng & Zeng, Junwei & Wei, Xuting & Zhang, Futao, 2024. "Analysis of stability, energy consumption and CO2 emissions in novel discrete-time car-following model with time delay under V2V environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
    8. Lyu, Zelin & Hu, Xiaojian & Zhang, Fang & Liu, Tenghui & Cui, Zhiwei, 2022. "Heterogeneous traffic flow characteristics on the highway with a climbing lane under different truck percentages: The framework of Kerner’s three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    9. Hu, Xiaojian & Qiao, Longqi & Hao, Xiatong & Lin, Chenxi & Liu, Tenghui, 2022. "Research on the impact of entry points on urban arterial roads in the framework of Kerner’s three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:530:y:2019:i:c:s0378437119309276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.