IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v525y2019icp1058-1062.html
   My bibliography  Save this article

Symmetry analysis of the time fractional Gaudrey–Dodd–Gibbon equation

Author

Listed:
  • Gao, Ben
  • Zhang, Yao

Abstract

In this paper, based on Lie symmetry analysis method, we study the invariance properties of the time fractional Gaudrey–Dodd–Gibbon equation. Using two kinds of different similarity variables, this equation can be reduced to two kinds of different nonlinear ordinary differential equations of fractional order. The fractional derivatives corresponding to reduction equations are usually known as the Erdélyi–Kober fractional derivative and Riemann–Liouville fractional derivative respectively.

Suggested Citation

  • Gao, Ben & Zhang, Yao, 2019. "Symmetry analysis of the time fractional Gaudrey–Dodd–Gibbon equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1058-1062.
  • Handle: RePEc:eee:phsmap:v:525:y:2019:i:c:p:1058-1062
    DOI: 10.1016/j.physa.2019.04.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119303875
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.04.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Qing & Zhdanov, Renat, 2014. "Symmetries and exact solutions of the time fractional Harry-Dym equation with Riemann–Liouville derivative," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 409(C), pages 110-118.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hashemi, M.S., 2015. "Group analysis and exact solutions of the time fractional Fokker–Planck equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 141-149.
    2. Akbulut, Arzu & Taşcan, Filiz, 2017. "Lie symmetries, symmetry reductions and conservation laws of time fractional modified Korteweg–de Vries (mkdv) equation," Chaos, Solitons & Fractals, Elsevier, vol. 100(C), pages 1-6.
    3. Azadeh Naderifard & Elham Dastranj & S. Reza Hejazi, 2018. "Exact solutions for time-fractional Fokker–Planck–Kolmogorov equation of Geometric Brownian motion via Lie point symmetries," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(02), pages 1-15, June.
    4. Sahoo, S. & Ray, S. Saha, 2017. "Invariant analysis with conservation laws for the time fractional Drinfeld–Sokolov–Satsuma–Hirota equations," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 725-733.
    5. Zhang, Zhi-Yong & Li, Guo-Fang, 2020. "Lie symmetry analysis and exact solutions of the time-fractional biological population model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    6. Hashemi, M.S., 2018. "Invariant subspaces admitted by fractional differential equations with conformable derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 161-169.
    7. Liu, Jian-Gen & Yang, Xiao-Jun & Feng, Yi-Ying & Cui, Ping, 2020. "On group analysis of the time fractional extended (2+1)-dimensional Zakharov–Kuznetsov equation in quantum magneto-plasmas," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 407-421.
    8. Hayman Thabet & Subhash Kendre & Dimplekumar Chalishajar, 2017. "New Analytical Technique for Solving a System of Nonlinear Fractional Partial Differential Equations," Mathematics, MDPI, vol. 5(4), pages 1-15, September.
    9. Inc, Mustafa & Yusuf, Abdullahi & Isa Aliyu, Aliyu & Baleanu, Dumitru, 2018. "Time-fractional Cahn–Allen and time-fractional Klein–Gordon equations: Lie symmetry analysis, explicit solutions and convergence analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 94-106.
    10. Tianhang Gong & Wei Feng & Songlin Zhao, 2022. "Symmetry Analysis and Conservation Laws for a Time-Fractional Generalized Porous Media Equation," Mathematics, MDPI, vol. 10(5), pages 1-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:525:y:2019:i:c:p:1058-1062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.