IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v409y2014icp110-118.html
   My bibliography  Save this article

Symmetries and exact solutions of the time fractional Harry-Dym equation with Riemann–Liouville derivative

Author

Listed:
  • Huang, Qing
  • Zhdanov, Renat

Abstract

In this paper, group analysis of the time fractional Harry-Dym equation with Riemann–Liouville derivative is performed. Its maximal symmetry group in Lie’s sense and the corresponding optimal system of subgroups are determined. Similarity reductions of the equation under study are performed. As a result, the reduced fractional ordinary differential equations are deduced, and some group invariant solutions in explicit form are obtained as well.

Suggested Citation

  • Huang, Qing & Zhdanov, Renat, 2014. "Symmetries and exact solutions of the time fractional Harry-Dym equation with Riemann–Liouville derivative," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 409(C), pages 110-118.
  • Handle: RePEc:eee:phsmap:v:409:y:2014:i:c:p:110-118
    DOI: 10.1016/j.physa.2014.04.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114003616
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.04.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Akbulut, Arzu & Taşcan, Filiz, 2017. "Lie symmetries, symmetry reductions and conservation laws of time fractional modified Korteweg–de Vries (mkdv) equation," Chaos, Solitons & Fractals, Elsevier, vol. 100(C), pages 1-6.
    2. Azadeh Naderifard & Elham Dastranj & S. Reza Hejazi, 2018. "Exact solutions for time-fractional Fokker–Planck–Kolmogorov equation of Geometric Brownian motion via Lie point symmetries," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(02), pages 1-15, June.
    3. Tianhang Gong & Wei Feng & Songlin Zhao, 2022. "Symmetry Analysis and Conservation Laws for a Time-Fractional Generalized Porous Media Equation," Mathematics, MDPI, vol. 10(5), pages 1-21, February.
    4. Sahoo, S. & Ray, S. Saha, 2017. "Invariant analysis with conservation laws for the time fractional Drinfeld–Sokolov–Satsuma–Hirota equations," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 725-733.
    5. Zhang, Zhi-Yong & Li, Guo-Fang, 2020. "Lie symmetry analysis and exact solutions of the time-fractional biological population model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    6. Liu, Jian-Gen & Yang, Xiao-Jun & Feng, Yi-Ying & Cui, Ping, 2020. "On group analysis of the time fractional extended (2+1)-dimensional Zakharov–Kuznetsov equation in quantum magneto-plasmas," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 407-421.
    7. Hashemi, M.S., 2015. "Group analysis and exact solutions of the time fractional Fokker–Planck equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 141-149.
    8. Inc, Mustafa & Yusuf, Abdullahi & Isa Aliyu, Aliyu & Baleanu, Dumitru, 2018. "Time-fractional Cahn–Allen and time-fractional Klein–Gordon equations: Lie symmetry analysis, explicit solutions and convergence analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 94-106.
    9. Hayman Thabet & Subhash Kendre & Dimplekumar Chalishajar, 2017. "New Analytical Technique for Solving a System of Nonlinear Fractional Partial Differential Equations," Mathematics, MDPI, vol. 5(4), pages 1-15, September.
    10. Hashemi, M.S., 2018. "Invariant subspaces admitted by fractional differential equations with conformable derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 161-169.
    11. Gao, Ben & Zhang, Yao, 2019. "Symmetry analysis of the time fractional Gaudrey–Dodd–Gibbon equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1058-1062.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:409:y:2014:i:c:p:110-118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.