IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v523y2019icp426-437.html
   My bibliography  Save this article

Critical result on the threshold of a stochastic SIS model with saturated incidence rate

Author

Listed:
  • Zhu, Chunjuan

Abstract

In this paper, we discuss the threshold R0̃ of a stochastic SIS epidemic model with saturated incidence based on [10]. If R0̃<1, the disease will die out for any intensity noise σ2>0, which is not proved in [10]. Then, it is obtained that the disease will also go to extinction in probability if R0̃=1, which has been left as an open problem in [10] and many other literatures. And when R0̃>1, we get the stochastic persistence of the disease (which is different from the persistence in mean in previous literatures) by using Chebyshev’s inequality. And it shows the smaller noise will strengthen the stability of systems. Besides, the existence of the stationary distribution is gotten. Finally, numerical simulations are given to illustrate the results.

Suggested Citation

  • Zhu, Chunjuan, 2019. "Critical result on the threshold of a stochastic SIS model with saturated incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 426-437.
  • Handle: RePEc:eee:phsmap:v:523:y:2019:i:c:p:426-437
    DOI: 10.1016/j.physa.2019.02.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119301657
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.02.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shufan Wang & Zhihui Ma, 2012. "Analysis of an Ecoepidemiological Model with Prey Refuges," Journal of Applied Mathematics, Hindawi, vol. 2012, pages 1-16, November.
    2. Liu, Meng & Yu, Jingyi & Mandal, Partha Sarathi, 2018. "Dynamics of a stochastic delay competitive model with harvesting and Markovian switching," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 335-349.
    3. Teng, Zhidong & Wang, Lei, 2016. "Persistence and extinction for a class of stochastic SIS epidemic models with nonlinear incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 507-518.
    4. Ji, Chunyan & Jiang, Daqing & Shi, Ningzhong, 2011. "Multigroup SIR epidemic model with stochastic perturbation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(10), pages 1747-1762.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Hashem Pesaran & Cynthia Fan Yang, 2022. "Matching theory and evidence on Covid‐19 using a stochastic network SIR model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1204-1229, September.
    2. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2020. "A stochastic SIRS epidemic model with logistic growth and general nonlinear incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    3. Jia, Pingqi & Wang, Chao & Zhang, Gaoyu & Ma, Jianfeng, 2019. "A rumor spreading model based on two propagation channels in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 342-353.
    4. Zhang, Yan & Fan, Kuangang & Gao, Shujing & Liu, Yingfen & Chen, Shihua, 2019. "Ergodic stationary distribution of a stochastic SIRS epidemic model incorporating media coverage and saturated incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 671-685.
    5. Hussain, Ghulam & Khan, Amir & Zahri, Mostafa & Zaman, Gul, 2022. "Ergodic stationary distribution of stochastic epidemic model for HBV with double saturated incidence rates and vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    6. Fan, Kuangang & Zhang, Yan & Gao, Shujing & Wei, Xiang, 2017. "A class of stochastic delayed SIR epidemic models with generalized nonlinear incidence rate and temporary immunity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 198-208.
    7. Li, Dongxi & Cui, Xiaowei, 2017. "Dynamics of virus infection model with nonlytic immune response induced by stochastic noise," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 124-132.
    8. Jeong, Darae & Lee, Chang Hyeong & Choi, Yongho & Kim, Junseok, 2016. "The daily computed weighted averaging basic reproduction number R0,k,ωn for MERS-CoV in South Korea," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 190-197.
    9. Lan, Guijie & Wei, Chunjin & Zhang, Shuwen, 2019. "Long time behaviors of single-species population models with psychological effect and impulsive toxicant in polluted environments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 828-842.
    10. Zhang, Xiao-Bing & Huo, Hai-Feng & Xiang, Hong & Shi, Qihong & Li, Dungang, 2017. "The threshold of a stochastic SIQS epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 362-374.
    11. Teng, Zhidong & Wang, Lei, 2016. "Persistence and extinction for a class of stochastic SIS epidemic models with nonlinear incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 507-518.
    12. Wen, Buyu & Teng, Zhidong & Li, Zhiming, 2018. "The threshold of a periodic stochastic SIVS epidemic model with nonlinear incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 532-549.
    13. Zhao, Xin & Zeng, Zhijun, 2020. "Stationary distribution and extinction of a stochastic ratio-dependent predator–prey system with stage structure for the predator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    14. Bobryk, R.V., 2021. "Stability analysis of a SIR epidemic model with random parametric perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    15. Rifhat, Ramziya & Wang, Lei & Teng, Zhidong, 2017. "Dynamics for a class of stochastic SIS epidemic models with nonlinear incidence and periodic coefficients," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 176-190.
    16. Gao, Miaomiao & Jiang, Daqing & Ding, Jieyu, 2024. "Dynamics of a chemostat model with Ornstein–Uhlenbeck process and general response function," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    17. Cao, Zhongwei & Shi, Yuee & Wen, Xiangdan & Su, Huishuang & Li, Xue, 2020. "Dynamic behaviors of a two-group stochastic SIRS epidemic model with standard incidence rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    18. Sharma, Swarnali & Samanta, G.P., 2015. "A Leslie–Gower predator–prey model with disease in prey incorporating a prey refuge," Chaos, Solitons & Fractals, Elsevier, vol. 70(C), pages 69-84.
    19. Wang, Hui & Pan, Fangmei & Liu, Meng, 2019. "Survival analysis of a stochastic service–resource mutualism model in a polluted environment with pulse toxicant input," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 591-606.
    20. Liu, Yan & Zhang, Di & Su, Huan & Feng, Jiqiang, 2019. "Stationary distribution for stochastic coupled systems with regime switching and feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:523:y:2019:i:c:p:426-437. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.