IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v520y2019icp151-160.html
   My bibliography  Save this article

A threshold of a delayed stochastic epidemic model with Crowly–Martin functional response and vaccination

Author

Listed:
  • El Fatini, Mohamed
  • Sekkak, Idriss
  • Laaribi, Aziz

Abstract

In this paper, we study a delayed stochastic SIR epidemic model with Crowly–Martin functional response and vaccination. First we prove the existence and the uniqueness of the positive solution. Therefore, we establish a stochastic threshold Rs as a sufficient condition for the extinction and persistence in mean of the stochastic epidemic system. Finally, numerical simulations are presented to support our theoretical results.

Suggested Citation

  • El Fatini, Mohamed & Sekkak, Idriss & Laaribi, Aziz, 2019. "A threshold of a delayed stochastic epidemic model with Crowly–Martin functional response and vaccination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 151-160.
  • Handle: RePEc:eee:phsmap:v:520:y:2019:i:c:p:151-160
    DOI: 10.1016/j.physa.2019.01.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119300093
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.01.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El Fatini, Mohamed & Lahrouz, Aadil & Pettersson, Roger & Settati, Adel & Taki, Regragui, 2018. "Stochastic stability and instability of an epidemic model with relapse," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 326-341.
    2. Liu, Qun & Jiang, Daqing & Shi, Ningzhong & Hayat, Tasawar, 2018. "Dynamics of a stochastic delayed SIR epidemic model with vaccination and double diseases driven by Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 2010-2018.
    3. Zhang, Xinhong & Jiang, Daqing & Hayat, Tasawar & Ahmad, Bashir, 2017. "Dynamical behavior of a stochastic SVIR epidemic model with vaccination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 94-108.
    4. Berrhazi, Badr-eddine & El Fatini, Mohamed & Laaribi, Aziz, 2018. "A stochastic threshold for an epidemic model with Beddington–DeAngelis incidence, delayed loss of immunity and Lévy noise perturbation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 312-320.
    5. Liu, Qun & Jiang, Daqing, 2016. "The threshold of a stochastic delayed SIR epidemic model with vaccination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 140-147.
    6. Zhang, Yue & Li, Yang & Zhang, Qingling & Li, Aihua, 2018. "Behavior of a stochastic SIR epidemic model with saturated incidence and vaccination rules," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 178-187.
    7. Berrhazi, Badreddine & El Fatini, Mohamed & Lahrouz, Aadil & Settati, Adel & Taki, Regragui, 2018. "A stochastic SIRS epidemic model with a general awareness-induced incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 968-980.
    8. Liu, Qun & Chen, Qingmei & Jiang, Daqing, 2016. "The threshold of a stochastic delayed SIR epidemic model with temporary immunity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 115-125.
    9. Hattaf, Khalid & Mahrouf, Marouane & Adnani, Jihad & Yousfi, Noura, 2018. "Qualitative analysis of a stochastic epidemic model with specific functional response and temporary immunity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 591-600.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. El Fatini, Mohamed & Sekkak, Idriss, 2020. "Lévy noise impact on a stochastic delayed epidemic model with Crowly–Martin incidence and crowding effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    2. Liu, Fangfang & Wei, Fengying, 2022. "An epidemic model with Beddington–DeAngelis functional response and environmental fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    3. Yang, Ying & Zhang, Jingwen & Wang, Kaiyuan & Zhang, Guofang, 2024. "Stationary distribution, density function and extinction of a stochastic SIQR epidemic model with Ornstein–Uhlenbeck process," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    4. Caraballo, Tomás & Fatini, Mohamed El & Khalifi, Mohamed El & Gerlach, Richard & Pettersson, Roger, 2020. "Analysis of a stochastic distributed delay epidemic model with relapse and Gamma distribution kernel," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    5. M, Pitchaimani & M, Brasanna Devi, 2021. "Stochastic dynamical probes in a triple delayed SICR model with general incidence rate and immunization strategies," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M, Pitchaimani & M, Brasanna Devi, 2021. "Stochastic dynamical probes in a triple delayed SICR model with general incidence rate and immunization strategies," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    2. Berrhazi, Badr-eddine & El Fatini, Mohamed & Laaribi, Aziz, 2018. "A stochastic threshold for an epidemic model with Beddington–DeAngelis incidence, delayed loss of immunity and Lévy noise perturbation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 312-320.
    3. El Fatini, Mohamed & Sekkak, Idriss, 2020. "Lévy noise impact on a stochastic delayed epidemic model with Crowly–Martin incidence and crowding effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    4. Alkhazzan, Abdulwasea & Wang, Jungang & Nie, Yufeng & Khan, Hasib & Alzabut, Jehad, 2023. "An effective transport-related SVIR stochastic epidemic model with media coverage and Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    5. Jia, Pingqi & Wang, Chao & Zhang, Gaoyu & Ma, Jianfeng, 2019. "A rumor spreading model based on two propagation channels in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 342-353.
    6. Wanduku, Divine, 2017. "Complete global analysis of a two-scale network SIRS epidemic dynamic model with distributed delay and random perturbations," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 49-76.
    7. Okita, Kouki & Tatsukawa, Yuichi & Utsumi, Shinobu & Arefin, Md. Rajib & Hossain, Md. Anowar & Tanimoto, Jun, 2023. "Stochastic resonance effect observed in a vaccination game with effectiveness framework obeying the SIR process on a scale-free network," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    8. Liu, Yue, 2022. "Extinction, persistence and density function analysis of a stochastic two-strain disease model with drug resistance mutation," Applied Mathematics and Computation, Elsevier, vol. 433(C).
    9. Fan, Kuangang & Zhang, Yan & Gao, Shujing & Wei, Xiang, 2017. "A class of stochastic delayed SIR epidemic models with generalized nonlinear incidence rate and temporary immunity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 198-208.
    10. Hattaf, Khalid & Mahrouf, Marouane & Adnani, Jihad & Yousfi, Noura, 2018. "Qualitative analysis of a stochastic epidemic model with specific functional response and temporary immunity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 591-600.
    11. Zhou, Baoquan & Han, Bingtao & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Ergodic stationary distribution and extinction of a hybrid stochastic SEQIHR epidemic model with media coverage, quarantine strategies and pre-existing immunity under discrete Markov switching," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    12. Cao, Zhongwei & Shi, Yuee & Wen, Xiangdan & Liu, Liya & Hu, Jingwei, 2020. "Analysis of a hybrid switching SVIR epidemic model with vaccination and Lévy noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    13. Zhang, Xiao-Bing & Huo, Hai-Feng & Xiang, Hong & Shi, Qihong & Li, Dungang, 2017. "The threshold of a stochastic SIQS epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 362-374.
    14. Chang, Zhengbo & Meng, Xinzhu & Lu, Xiao, 2017. "Analysis of a novel stochastic SIRS epidemic model with two different saturated incidence rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 472(C), pages 103-116.
    15. Boukanjime, Brahim & El Fatini, Mohamed & Laaribi, Aziz & Taki, Regragui, 2019. "Analysis of a deterministic and a stochastic epidemic model with two distinct epidemics hypothesis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    16. Cai, Yongli & Kang, Yun & Wang, Weiming, 2017. "A stochastic SIRS epidemic model with nonlinear incidence rate," Applied Mathematics and Computation, Elsevier, vol. 305(C), pages 221-240.
    17. Wen, Buyu & Teng, Zhidong & Li, Zhiming, 2018. "The threshold of a periodic stochastic SIVS epidemic model with nonlinear incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 532-549.
    18. Sun, Shulin & Zhang, Xiaofeng, 2018. "Asymptotic behavior of a stochastic delayed chemostat model with nonmonotone uptake function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 38-56.
    19. Berrhazi, Badr-eddine & El Fatini, Mohamed & Laaribi, Aziz & Pettersson, Roger, 2018. "A stochastic viral infection model driven by Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 446-452.
    20. Li, Yan & Ye, Ming & Zhang, Qimin, 2019. "Strong convergence of the partially truncated Euler–Maruyama scheme for a stochastic age-structured SIR epidemic model," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:520:y:2019:i:c:p:151-160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.