IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v512y2018icp1104-1112.html
   My bibliography  Save this article

The impact of trading volume on the stock market credibility: Bohmian quantum potential approach

Author

Listed:
  • Nasiri, S.
  • Bektas, E.
  • Jafari, G.R.

Abstract

Price return is an interesting factor for many investors; however, it is expected that the price return to be affected by the trading volume of any given market as a complex system. The Bohmian quantum mechanics is used due to the time correlation of return and volume of the stock markets under consideration. Recent studies have shown that the quantum potential given by the Bohmian quantum mechanics confines price return variations into a definite interval. In this study, we extend the quantum potential concept to investigate the behavior of trading volume and its possible influences on the price return. The obtained results show that the quantum potential behaves in the same manner for trading volume as the price return, and confines the variations of the volume into a specific domain. Furthermore, a joint quantum potential as a function of return and volume is derived by the probability distribution function (PDF) constructed by the real data of a given market. It serves as a suitable instrument to investigate the relationship between these variables and to check the credibility of the market at higher volumes. The resultant PDF and the corresponding joint quantum potential illustrate that the variations of price return at higher volumes decrease as the trading volume increases, making the market more credible which is more pronounced in developed markets.

Suggested Citation

  • Nasiri, S. & Bektas, E. & Jafari, G.R., 2018. "The impact of trading volume on the stock market credibility: Bohmian quantum potential approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1104-1112.
  • Handle: RePEc:eee:phsmap:v:512:y:2018:i:c:p:1104-1112
    DOI: 10.1016/j.physa.2018.08.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118309725
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.08.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Conrad, Jennifer S & Hameed, Allaudeen & Niden, Cathy, 1994. "Volume and Autocovariances in Short-Horizon Individual Security Returns," Journal of Finance, American Finance Association, vol. 49(4), pages 1305-1329, September.
    2. M. F. M. Osborne, 1959. "Brownian Motion in the Stock Market," Operations Research, INFORMS, vol. 7(2), pages 145-173, April.
    3. Sina Nasiri & Eralp Bektas & Gholamreza Jafari, 2018. "Risk Information of Stock Market Using Quantum Potential Constraints," Springer Proceedings in Business and Economics, in: Nesrin Ozatac & Korhan K. Gökmenoglu (ed.), Emerging Trends in Banking and Finance, pages 132-138, Springer.
    4. Chuang, Chia-Chang & Kuan, Chung-Ming & Lin, Hsin-Yi, 2009. "Causality in quantiles and dynamic stock return-volume relations," Journal of Banking & Finance, Elsevier, vol. 33(7), pages 1351-1360, July.
    5. John Y. Campbell & Sanford J. Grossman & Jiang Wang, 1993. "Trading Volume and Serial Correlation in Stock Returns," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(4), pages 905-939.
    6. Lo, Andrew W & Wang, Jiang, 2000. "Trading Volume: Definitions, Data Analysis, and Implications of Portfolio Theory," The Review of Financial Studies, Society for Financial Studies, vol. 13(2), pages 257-300.
    7. Hsin-Yi Lin, 2013. "Dynamic Stock Return–Volume Relation: Evidence From Emerging Asian Markets," Bulletin of Economic Research, Wiley Blackwell, vol. 65(2), pages 178-193, April.
    8. Baaquie, Belal E., 2013. "Statistical microeconomics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4400-4416.
    9. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: II. Agent-based models," Post-Print hal-00621059, HAL.
    10. Chen, Gong-meng & Firth, Michael & Rui, Oliver M, 2001. "The Dynamic Relation between Stock Returns, Trading Volume, and Volatility," The Financial Review, Eastern Finance Association, vol. 36(3), pages 153-173, August.
    11. Hiemstra, Craig & Jones, Jonathan D, 1994. "Testing for Linear and Nonlinear Granger Causality in the Stock Price-Volume Relation," Journal of Finance, American Finance Association, vol. 49(5), pages 1639-1664, December.
    12. Simon Gervais & Ron Kaniel & Dan H. Mingelgrin, 2001. "The High‐Volume Return Premium," Journal of Finance, American Finance Association, vol. 56(3), pages 877-919, June.
    13. Copeland, Thomas E, 1976. "A Model of Asset Trading under the Assumption of Sequential Information Arrival," Journal of Finance, American Finance Association, vol. 31(4), pages 1149-1168, September.
    14. Guillermo Llorente & Roni Michaely & Gideon Saar & Jiang Wang, 2002. "Dynamic Volume-Return Relation of Individual Stocks," The Review of Financial Studies, Society for Financial Studies, vol. 15(4), pages 1005-1047.
    15. Karpoff, Jonathan M., 1987. "The Relation between Price Changes and Trading Volume: A Survey," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(1), pages 109-126, March.
    16. Haven, Emmanuel, 2004. "An `ℏ-Brownian motion' and the existence of stochastic option prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 152-155.
    17. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: II. Agent-based models," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 1013-1041.
    18. Baaquie, Belal E. & Du, Xin & Bhanap, Jitendra, 2014. "Option pricing: Stock price, stock velocity and the acceleration Lagrangian," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 564-581.
    19. Saatcioglu, Kemal & Starks, Laura T., 1998. "The stock price-volume relationship in emerging stock markets: the case of Latin America," International Journal of Forecasting, Elsevier, vol. 14(2), pages 215-225, June.
    20. Todorova, Neda & Souček, Michael, 2014. "The impact of trading volume, number of trades and overnight returns on forecasting the daily realized range," Economic Modelling, Elsevier, vol. 36(C), pages 332-340.
    21. Wang, Jiang, 1994. "A Model of Competitive Stock Trading Volume," Journal of Political Economy, University of Chicago Press, vol. 102(1), pages 127-168, February.
    22. Andersen, Torben G, 1996. "Return Volatility and Trading Volume: An Information Flow Interpretation of Stochastic Volatility," Journal of Finance, American Finance Association, vol. 51(1), pages 169-204, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Bo & Wang, Guochao & Wang, Yiduan & Zhang, Wei & Wang, Jun, 2019. "Multiscale statistical behaviors for Ising financial dynamics with continuum percolation jump," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1012-1025.
    2. Ashok Chanabasangouda Patil & Shailesh Rastogi, 2019. "Time-Varying Price–Volume Relationship and Adaptive Market Efficiency: A Survey of the Empirical Literature," JRFM, MDPI, vol. 12(2), pages 1-18, June.
    3. Ardalankia, Jamshid & Osoolian, Mohammad & Haven, Emmanuel & Jafari, G. Reza, 2020. "Scaling features of price–volume cross correlation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    4. Haoran Zheng & Jing Bai, 2024. "Quantum Leap: A Price Leap Mechanism in Financial Markets," Mathematics, MDPI, vol. 12(2), pages 1-27, January.
    5. Reza Hosseini & Samin Tajik & Zahra Koohi Lai & Tayeb Jamali & Emmanuel Haven & G. Reza Jafari, 2022. "Quantum Bohmian Inspired Potential to Model Non-Gaussian Events and the Application in Financial Markets," Papers 2204.11203, arXiv.org.
    6. Jamshid Ardalankia & Mohammad Osoolian & Emmanuel Haven & G. Reza Jafari, 2019. "Scaling Features of Price-Volume Cross-Correlation," Papers 1903.01744, arXiv.org, revised Aug 2020.
    7. Zhao, Jun, 2019. "Nonstationary response of a nonlinear economic cycle model under random disturbance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 409-421.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yamani, Ehab, 2023. "Return–volume nexus in financial markets: A survey of research," Research in International Business and Finance, Elsevier, vol. 65(C).
    2. Ashok Chanabasangouda Patil & Shailesh Rastogi, 2019. "Time-Varying Price–Volume Relationship and Adaptive Market Efficiency: A Survey of the Empirical Literature," JRFM, MDPI, vol. 12(2), pages 1-18, June.
    3. Panpan Wang & Tsungwu Ho & Yishi Li, 2020. "The Price-Volume Relationship of the Shanghai Stock Index: Structural Change and the Threshold Effect of Volatility," Sustainability, MDPI, vol. 12(8), pages 1-17, April.
    4. Gebka, Bartosz & Wohar, Mark E., 2013. "Causality between trading volume and returns: Evidence from quantile regressions," International Review of Economics & Finance, Elsevier, vol. 27(C), pages 144-159.
    5. Wang, Zijun & Qian, Yan & Wang, Shiwen, 2018. "Dynamic trading volume and stock return relation: Does it hold out of sample?," International Review of Financial Analysis, Elsevier, vol. 58(C), pages 195-210.
    6. Marcus Alexander Ong, 2015. "An information theoretic analysis of stock returns, volatility and trading volumes," Applied Economics, Taylor & Francis Journals, vol. 47(36), pages 3891-3906, August.
    7. Bartosz Gębka, 2012. "The Dynamic Relation Between Returns, Trading Volume, And Volatility: Lessons From Spillovers Between Asia And The United States," Bulletin of Economic Research, Wiley Blackwell, vol. 64(1), pages 65-90, January.
    8. Cetin Ciner, 2003. "Dynamic Linkages Between Trading Volume and Price Movements: Evidence for Small Firm Stocks," Journal of Entrepreneurial Finance, Pepperdine University, Graziadio School of Business and Management, vol. 8(1), pages 87-102, Spring.
    9. Gebka, Bartosz, 2006. "Leaders and Laggards: International Evidence on Spillovers in Returns, Variance, and Trading Volume," Working Paper Series 2006,1, European University Viadrina Frankfurt (Oder), The Postgraduate Research Programme Capital Markets and Finance in the Enlarged Europe.
    10. Agapova, Anna & Kaprielyan, Margarita, 2020. "Stock volatility and trading," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    11. Ngene, Geoffrey M. & Mungai, Ann Nduati, 2022. "Stock returns, trading volume, and volatility: The case of African stock markets," International Review of Financial Analysis, Elsevier, vol. 82(C).
    12. Abhinava Tripathi, 2021. "The Arrival of Information and Price Adjustment Across Extreme Quantiles: Global Evidence," IIM Kozhikode Society & Management Review, , vol. 10(1), pages 7-19, January.
    13. Elina Pradkhan, 2016. "Information Content of Trading Activity in Precious Metals Futures Markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(5), pages 421-456, May.
    14. Kausik Chaudhuri & Alok Kumar, 2015. "A Markov-Switching Model for Indian Stock Price and Volume," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 14(3), pages 239-257, December.
    15. Mehmet Balcilar & Elie Bouri & Rangan Gupta & David Roubaud, 2016. "Can Volume Predict Bitcoin Returns and Volatility? A Nonparametric Causality-in-Quantiles Approach," Working Papers 201662, University of Pretoria, Department of Economics.
    16. Sinha, Pankaj & Agnihotri, Shalini, 2014. "Investigating impact of volatility persistence, market asymmetry and information inflow on volatility of stock indices using bivariate GJR-GARCH," MPRA Paper 58303, University Library of Munich, Germany.
    17. Chuang, Wen-I & Liu, Hsiang-Hsi & Susmel, Rauli, 2012. "The bivariate GARCH approach to investigating the relation between stock returns, trading volume, and return volatility," Global Finance Journal, Elsevier, vol. 23(1), pages 1-15.
    18. Balcilar, Mehmet & Bouri, Elie & Gupta, Rangan & Roubaud, David, 2017. "Can volume predict Bitcoin returns and volatility? A quantiles-based approach," Economic Modelling, Elsevier, vol. 64(C), pages 74-81.
    19. Serge Darolles & Gaëlle Le Fol, 2003. "Trading Volume and Arbitrage," Working Papers 2003-46, Center for Research in Economics and Statistics.
    20. John M. Griffin & Federico Nardari & René M. Stulz, 2007. "Do Investors Trade More When Stocks Have Performed Well? Evidence from 46 Countries," The Review of Financial Studies, Society for Financial Studies, vol. 20(3), pages 905-951.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:512:y:2018:i:c:p:1104-1112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.