IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v510y2018icp415-425.html
   My bibliography  Save this article

Influencer discovery algorithm in a multi-relational network

Author

Listed:
  • Ma, Ning
  • Liu, Yijun
  • Chi, Yuxue

Abstract

With the development of social networks, the interaction between users and the application of social platforms for communications has become increasingly diverse. The influence and authority of different users have also been distinguished in constant communications. To better research the dissemination mechanism of different users’ views on social platforms, a multi-relational network model first had to be built that can retain the interactive relationship between social networks to the maximum extent. In this model, the node has an impact weight, while the linked edge has a link weight. Combining these features of a multi-relational network model, a discovery algorithm – the InfluencerRank algorithm – was proposed. This discovery algorithm accurately identifies the essential influential nodes in networks. By combining the data of cases with the InfluencerRank algorithm, we identified influencers and conducted a comparative analysis.

Suggested Citation

  • Ma, Ning & Liu, Yijun & Chi, Yuxue, 2018. "Influencer discovery algorithm in a multi-relational network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 415-425.
  • Handle: RePEc:eee:phsmap:v:510:y:2018:i:c:p:415-425
    DOI: 10.1016/j.physa.2018.06.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711830788X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.06.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Ling & Liu, Yun & Bartolacci, Michael R. & Ting, I-Hsien, 2016. "A multi information dissemination model considering the interference of derivative information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 541-548.
    2. Yuan, Wei-Guo & Liu, Yun, 2015. "A mixing evolution model for bidirectional microblog user networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 167-179.
    3. Zhang, Yaming & Su, Yanyuan & Weigang, Li & Liu, Haiou, 2018. "Rumor and authoritative information propagation model considering super spreading in complex social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 395-411.
    4. Eom, Young-Ho & Shepelyansky, Dima L., 2015. "Opinion formation driven by PageRank node influence on directed networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 707-715.
    5. Tang, Shaoting & Teng, Xian & Pei, Sen & Yan, Shu & Zheng, Zhiming, 2015. "Identification of highly susceptible individuals in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 363-372.
    6. Al-garadi, Mohammed Ali & Varathan, Kasturi Dewi & Ravana, Sri Devi, 2017. "Identification of influential spreaders in online social networks using interaction weighted K-core decomposition method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 278-288.
    7. Chen, Duanbing & Lü, Linyuan & Shang, Ming-Sheng & Zhang, Yi-Cheng & Zhou, Tao, 2012. "Identifying influential nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1777-1787.
    8. Zhu, Hui & Huang, Cheng & Lu, Rongxing & Li, Hui, 2016. "Modelling information dissemination under privacy concerns in social media," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 53-63.
    9. Sheikhahmadi, Amir & Nematbakhsh, Mohammad Ali & Zareie, Ahmad, 2017. "Identification of influential users by neighbors in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 517-534.
    10. Wang, Qiyao & Jin, Yuehui & Cheng, Shiduan & Yang, Tan, 2017. "ConformRank: A conformity-based rank for finding top-k influential users," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 39-48.
    11. Liu, Yu & Wang, Bai & Wu, Bin & Shang, Suiming & Zhang, Yunlei & Shi, Chuan, 2016. "Characterizing super-spreading in microblog: An epidemic-based information propagation model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 202-218.
    12. Kandiah, Vivek & Shepelyansky, Dima L., 2012. "PageRank model of opinion formation on social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5779-5793.
    13. Ho, Jason Y.C. & Dempsey, Melanie, 2010. "Viral marketing: Motivations to forward online content," Journal of Business Research, Elsevier, vol. 63(9-10), pages 1000-1006, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Al-Azim, Nouran Ayman R. Abd & Gharib, Tarek F. & Afify, Yasmine & Hamdy, Mohamed, 2020. "Influence propagation: Interest groups and node ranking models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chaharborj, Sarkhosh Seddighi & Nabi, Khondoker Nazmoon & Feng, Koo Lee & Chaharborj, Shahriar Seddighi & Phang, Pei See, 2022. "Controlling COVID-19 transmission with isolation of influential nodes," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    2. Zareie, Ahmad & Sheikhahmadi, Amir, 2019. "EHC: Extended H-index Centrality measure for identification of users’ spreading influence in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 141-155.
    3. Yin, Likang & Deng, Yong, 2018. "Measuring transferring similarity via local information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 498(C), pages 102-115.
    4. Tsugawa, Sho & Kimura, Kazuma, 2018. "Identifying influencers from sampled social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 294-303.
    5. Xiao, Yunpeng & Zhang, Li & Li, Qian & Liu, Ling, 2019. "MM-SIS: Model for multiple information spreading in multiplex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 135-146.
    6. C'elestin Coquid'e & Jos'e Lages & Dima L. Shepelyansky, 2023. "Prospects of BRICS currency dominance in international trade," Papers 2305.00585, arXiv.org.
    7. Fu, Minglei & Feng, Jun & Lande, Dmytro & Dmytrenko, Oleh & Manko, Dmytro & Prakapovich, Ryhor, 2021. "Dynamic model with super spreaders and lurker users for preferential information propagation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    8. Zhu, Canshi & Wang, Xiaoyang & Zhu, Lin, 2017. "A novel method of evaluating key nodes in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 96(C), pages 43-50.
    9. Tingqiang Chen & Lei Wang & Jining Wang & Qi Yang, 2017. "A Network Diffusion Model of Food Safety Scare Behavior considering Information Transparency," Complexity, Hindawi, vol. 2017, pages 1-16, December.
    10. Gian Luca Gregori & Valerio Temperini, 2013. "Il ruolo dell?e-learning nelle strategie di comunicazione delle imprese. Il caso della iGuzzini illuminazione," ECONOMIA E DIRITTO DEL TERZIARIO, FrancoAngeli Editore, vol. 2013(3), pages 421-435.
    11. Irina Heimbach & Oliver Hinz, 2018. "The Impact of Sharing Mechanism Design on Content Sharing in Online Social Networks," Information Systems Research, INFORMS, vol. 29(3), pages 592-611, September.
    12. Berahmand, Kamal & Bouyer, Asgarali & Samadi, Negin, 2018. "A new centrality measure based on the negative and positive effects of clustering coefficient for identifying influential spreaders in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 41-54.
    13. Célestin Coquidé & José Lages & Dima Shepelyansky, 2024. "Opinion Formation in the World Trade Network," Post-Print hal-04461784, HAL.
    14. Xuefeng Yue & Liangan Huo, 2022. "Analysis of the Stability and Optimal Control Strategy for an ISCR Rumor Propagation Model with Saturated Incidence and Time Delay on a Scale-Free Network," Mathematics, MDPI, vol. 10(20), pages 1-20, October.
    15. Wei, Daijun & Deng, Xinyang & Zhang, Xiaoge & Deng, Yong & Mahadevan, Sankaran, 2013. "Identifying influential nodes in weighted networks based on evidence theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2564-2575.
    16. Conde, Rita & Casais, Beatriz, 2023. "Micro, macro and mega-influencers on instagram: The power of persuasion via the parasocial relationship," Journal of Business Research, Elsevier, vol. 158(C).
    17. Rafiee, Samira & Salavati, Chiman & Abdollahpouri, Alireza, 2020. "CNDP: Link prediction based on common neighbors degree penalization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    18. Faxu Li & Hui Xu & Liang Wei & Defang Wang, 2023. "RETRACTED ARTICLE: Identifying vital nodes in hypernetwork based on local centrality," Journal of Combinatorial Optimization, Springer, vol. 45(1), pages 1-13, January.
    19. Namtirtha, Amrita & Dutta, Animesh & Dutta, Biswanath, 2018. "Identifying influential spreaders in complex networks based on kshell hybrid method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 310-324.
    20. Hu, Ping & Geng, Dongqing & Lin, Tao & Ding, Li, 2021. "Coupled propagation dynamics on multiplex activity-driven networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:510:y:2018:i:c:p:415-425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.