IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v346y2019icp395-407.html
   My bibliography  Save this article

A new chaotic network model for epilepsy

Author

Listed:
  • Panahi, Shirin
  • Shirzadian, Touraj
  • Jalili, Mahdi
  • Jafari, Sajad

Abstract

Epilepsy is a prevalent neurological disorder with symptoms characterized by abnormal discharge in the brain. According to the classification of the International League Against Epilepsy (ILAE) Commission, temporal lobe epilepsy is the most common type of epilepsy accounting for the most cases of the disorder observed in patients. Electroencephalography (EEG) is the most common diagnostic tool for Epilepsy, by which abnormal electrical activity of the brain can be clearly seen. This paper uses chaos theory and proposes a new analytical mass model for temporal lobe Epilepsy. Chaotic behavior of the model indicates normal model, while its periodic behavior indicate epileptic mode of the brain. The proposed model includes a number of parameters for which a full bifurcation analysis is conducted. This fully characterizes different regimes of the model and allows studying how one can control the parameters to switch between different modes. The proposed model enables to effectively use advance chaos-based mathematical tools to get further insights on the underlying mechanisms of epilepsy.

Suggested Citation

  • Panahi, Shirin & Shirzadian, Touraj & Jalili, Mahdi & Jafari, Sajad, 2019. "A new chaotic network model for epilepsy," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 395-407.
  • Handle: RePEc:eee:apmaco:v:346:y:2019:i:c:p:395-407
    DOI: 10.1016/j.amc.2018.10.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318309275
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.10.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rostami, Zahra & Pham, Viet-Thanh & Jafari, Sajad & Hadaeghi, Fatemeh & Ma, Jun, 2018. "Taking control of initiated propagating wave in a neuronal network using magnetic radiation," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 141-151.
    2. Rostami, Zahra & Rajagopal, Karthikeyan & Khalaf, Abdul Jalil M. & Jafari, Sajad & Perc, Matjaž & Slavinec, Mitja, 2018. "Wavefront-obstacle interactions and the initiation of reentry in excitable media," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 1162-1173.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Borah, Manashita & Das, Debanita & Gayan, Antara & Fenton, Flavio & Cherry, Elizabeth, 2021. "Control and anticontrol of chaos in fractional-order models of Diabetes, HIV, Dengue, Migraine, Parkinson's and Ebola virus diseases," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rajagopal, Karthikeyan & Hussain, Iqtadar & Rostami, Zahra & Li, Chunbiao & Pham, Viet-Thanh & Jafari, Sajad, 2021. "Magnetic induction can control the effect of external electrical stimuli on the spiral wave," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    2. Parastesh, Fatemeh & Rajagopal, Karthikeyan & Alsaadi, Fawaz E. & Hayat, Tasawar & Pham, V.-T. & Hussain, Iqtadar, 2019. "Birth and death of spiral waves in a network of Hindmarsh–Rose neurons with exponential magnetic flux and excitable media," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 377-384.
    3. Nazarimehr, Fahimeh & Panahi, Shirin & Jalili, Mahdi & Perc, Matjaž & Jafari, Sajad & Ferčec, Brigita, 2020. "Multivariable coupling and synchronization in complex networks," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    4. Smith, Nathaniel J. & Glaser, Rebecca & Hui, Vincent W.H. & Lindner, John F. & Manz, Niklas, 2019. "Disruption and recovery of reaction–diffusion wavefronts colliding with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 307-320.
    5. Rajagopal, Karthikeyan & Jafari, Sajad & Li, Chunbiao & Karthikeyan, Anitha & Duraisamy, Prakash, 2021. "Suppressing spiral waves in a lattice array of coupled neurons using delayed asymmetric synapse coupling," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    6. Yu, Yang F. & Fuller, Chase A. & McGuire, Margaret K. & Glaser, Rebecca & Smith, Nathaniel J. & Manz, Niklas & Lindner, John F., 2021. "Disruption and recovery of reaction–diffusion wavefronts interacting with concave, fractal, and soft obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    7. Ding, Qianming & Wu, Yong & Hu, Yipeng & Liu, Chaoyue & Hu, Xueyan & Jia, Ya, 2023. "Tracing the elimination of reentry spiral waves in defibrillation: Temperature effects," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    8. Wang, Zhen & Rostami, Zahra & Jafari, Sajad & Alsaadi, Fawaz E. & Slavinec, Mitja & Perc, Matjaž, 2019. "Suppression of spiral wave turbulence by means of periodic plane waves in two-layer excitable media," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 229-233.
    9. Rajagopal, Karthikeyan & Nezhad Hajian, Dorsa & Natiq, Hayder & Peng, Yuexi & Parastesh, Fatemeh & Jafari, Sajad, 2024. "Effect of Gaussian gradient in the medium's action potential morphology on spiral waves," Applied Mathematics and Computation, Elsevier, vol. 470(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:346:y:2019:i:c:p:395-407. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.