IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v503y2018icp424-438.html
   My bibliography  Save this article

Fractional conformable derivatives of Liouville–Caputo type with low-fractionality

Author

Listed:
  • Morales-Delgado, V.F.
  • Gómez-Aguilar, J.F.
  • Escobar-Jiménez, R.F.
  • Taneco-Hernández, M.A.

Abstract

This paper presents a novel fractional conformable derivative of Liouville–Caputo type of fractional order α=n−ϵ that contains a small ϵ and positive integer n values between [1;2]. The method is applied to obtain analytical solutions for the electrical circuits LC and RL and for the equations that describe the motion of a charged particle in an electromagnetic field using an expansion of the fractional conformable derivative in ϵ=n−α. Numerical simulations were obtained for different values of the fractional order and the parameter ϵ. This novel fractional conformable derivative allows describing physical systems where the level of fractality is low, such as oscillators, quantum dynamics, electromagnetic fields, mechanics of fractal and complex media, among others.

Suggested Citation

  • Morales-Delgado, V.F. & Gómez-Aguilar, J.F. & Escobar-Jiménez, R.F. & Taneco-Hernández, M.A., 2018. "Fractional conformable derivatives of Liouville–Caputo type with low-fractionality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 424-438.
  • Handle: RePEc:eee:phsmap:v:503:y:2018:i:c:p:424-438
    DOI: 10.1016/j.physa.2018.03.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118303261
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.03.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tofighi, A. & Pour, H. Nasrolah, 2007. "ε-expansion and the fractional oscillator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(1), pages 41-45.
    2. Tofighi, A. & Golestani, A., 2008. "A perturbative study of fractional relaxation phenomena," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(8), pages 1807-1817.
    3. Goldfain, Ervin, 2006. "Complexity in quantum field theory and physics beyond the standard model," Chaos, Solitons & Fractals, Elsevier, vol. 28(4), pages 913-922.
    4. Laskin, N. & Zaslavsky, G., 2006. "Nonlinear fractional dynamics on a lattice with long range interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 368(1), pages 38-54.
    5. Tarasov, Vasily E. & Zaslavsky, George M., 2006. "Dynamics with low-level fractionality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 368(2), pages 399-415.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Chaoqun & Ma, Zonggang & Xiao, Shisong, 2019. "A closed-form pricing formula for vulnerable European options under stochastic yield spreads and interest rates," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 59-68.
    2. Kumar, Sachin & Pandey, Prashant, 2020. "A Legendre spectral finite difference method for the solution of non-linear space-time fractional Burger’s–Huxley and reaction-diffusion equation with Atangana–Baleanu derivative," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    3. Owolabi, Kolade M. & Pindza, Edson, 2019. "Modeling and simulation of nonlinear dynamical system in the frame of nonlocal and non-singular derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 146-157.
    4. Kaya, Guven & Kartal, Senol & Gurcan, Fuat, 2020. "Dynamical analysis of a discrete conformable fractional order bacteria population model in a microcosm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    5. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    6. Abdeljawad, Thabet & Al-Mdallal, Qasem M. & Jarad, Fahd, 2019. "Fractional logistic models in the frame of fractional operators generated by conformable derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 94-101.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Herrmann, Richard, 2010. "Common aspects of q-deformed Lie algebras and fractional calculus," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4613-4622.
    2. Tarasov, Vasily E. & Zaslavsky, George M., 2007. "Fractional dynamics of systems with long-range space interaction and temporal memory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(2), pages 291-308.
    3. Michelitsch, T.M. & Collet, B.A. & Riascos, A.P. & Nowakowski, A.F. & Nicolleau, F.C.G.A., 2016. "A fractional generalization of the classical lattice dynamics approach," Chaos, Solitons & Fractals, Elsevier, vol. 92(C), pages 43-50.
    4. EL-Nabulsi, Ahmad Rami, 2009. "Fractional action-like variational problems in holonomic, non-holonomic and semi-holonomic constrained and dissipative dynamical systems," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 52-61.
    5. Zhang, Chaoxia & Yu, Simin, 2011. "Generation of multi-wing chaotic attractor in fractional order system," Chaos, Solitons & Fractals, Elsevier, vol. 44(10), pages 845-850.
    6. El-Nabulsi, Rami Ahmad, 2009. "Fractional Dirac operators and deformed field theory on Clifford algebra," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2614-2622.
    7. Tarasov, Vasily E., 2023. "Nonlocal statistical mechanics: General fractional Liouville equations and their solutions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    8. Liu, Zeting & Lü, Shujuan & Liu, Fawang, 2018. "Fully discrete spectral methods for solving time fractional nonlinear Sine–Gordon equation with smooth and non-smooth solutions," Applied Mathematics and Computation, Elsevier, vol. 333(C), pages 213-224.
    9. Tarasov, Vasily E., 2015. "Fractional Liouville equation on lattice phase-space," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 330-342.
    10. Tarasov, Vasily E., 2015. "Lattice fractional calculus," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 12-33.
    11. Vasily E. Tarasov, 2024. "Exact Finite-Difference Calculus: Beyond Set of Entire Functions," Mathematics, MDPI, vol. 12(7), pages 1-37, March.
    12. Rami, El-Nabulsi Ahmad, 2009. "Fractional illusion theory of space: Fractional gravitational field with fractional extra-dimensions," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 377-384.
    13. Ishiwata, Ryosuke & Sugiyama, Yūki, 2012. "Relationships between power-law long-range interactions and fractional mechanics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 5827-5838.
    14. Korabel, Nickolay & Zaslavsky, George M., 2007. "Transition to chaos in discrete nonlinear Schrödinger equation with long-range interaction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(2), pages 223-237.
    15. Rami, El-Nabulsi Ahmad, 2009. "On the fractional minimal length Heisenberg–Weyl uncertainty relation from fractional Riccati generalized momentum operator," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 84-88.
    16. El-Nabulsi, Ahmad Rami, 2009. "Complexified quantum field theory and “mass without mass” from multidimensional fractional actionlike variational approach with dynamical fractional exponents," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2384-2398.
    17. Huang, Chengdai & Cao, Jinde & Xiao, Min & Alsaedi, Ahmed & Alsaadi, Fuad E., 2017. "Controlling bifurcation in a delayed fractional predator–prey system with incommensurate orders," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 293-310.
    18. Natalya Ayzenberg & Igor Bykadorov & Sergey Kokovin, 2018. "Optimal Reciprocal Import Tariffs Under Variable Elasticity Of Substitution," HSE Working papers WP BRP 204/EC/2018, National Research University Higher School of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:503:y:2018:i:c:p:424-438. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.