IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v368y2006i1p38-54.html
   My bibliography  Save this article

Nonlinear fractional dynamics on a lattice with long range interactions

Author

Listed:
  • Laskin, N.
  • Zaslavsky, G.

Abstract

A unified approach has been developed to study nonlinear dynamics of a 1D lattice of particles with long-range power-law interaction. A classical case is treated in the framework of the generalization of the well-known Frenkel–Kontorova chain model for the non-nearest interactions. Quantum dynamics is considered following Davydov's approach for molecular excitons.

Suggested Citation

  • Laskin, N. & Zaslavsky, G., 2006. "Nonlinear fractional dynamics on a lattice with long range interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 368(1), pages 38-54.
  • Handle: RePEc:eee:phsmap:v:368:y:2006:i:1:p:38-54
    DOI: 10.1016/j.physa.2006.02.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437106002469
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2006.02.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ishiwata, Ryosuke & Sugiyama, Yūki, 2012. "Relationships between power-law long-range interactions and fractional mechanics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 5827-5838.
    2. Liu, Zeting & Lü, Shujuan & Liu, Fawang, 2018. "Fully discrete spectral methods for solving time fractional nonlinear Sine–Gordon equation with smooth and non-smooth solutions," Applied Mathematics and Computation, Elsevier, vol. 333(C), pages 213-224.
    3. Tarasov, Vasily E., 2015. "Fractional Liouville equation on lattice phase-space," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 330-342.
    4. Morales-Delgado, V.F. & Gómez-Aguilar, J.F. & Escobar-Jiménez, R.F. & Taneco-Hernández, M.A., 2018. "Fractional conformable derivatives of Liouville–Caputo type with low-fractionality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 424-438.
    5. Tarasov, Vasily E., 2015. "Lattice fractional calculus," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 12-33.
    6. Michelitsch, T.M. & Collet, B.A. & Riascos, A.P. & Nowakowski, A.F. & Nicolleau, F.C.G.A., 2016. "A fractional generalization of the classical lattice dynamics approach," Chaos, Solitons & Fractals, Elsevier, vol. 92(C), pages 43-50.
    7. Zhang, Chaoxia & Yu, Simin, 2011. "Generation of multi-wing chaotic attractor in fractional order system," Chaos, Solitons & Fractals, Elsevier, vol. 44(10), pages 845-850.
    8. Tarasov, Vasily E., 2023. "Nonlocal statistical mechanics: General fractional Liouville equations and their solutions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    9. Huang, Chengdai & Cao, Jinde & Xiao, Min & Alsaedi, Ahmed & Alsaadi, Fuad E., 2017. "Controlling bifurcation in a delayed fractional predator–prey system with incommensurate orders," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 293-310.
    10. Vasily E. Tarasov, 2024. "Exact Finite-Difference Calculus: Beyond Set of Entire Functions," Mathematics, MDPI, vol. 12(7), pages 1-37, March.
    11. Tarasov, Vasily E. & Zaslavsky, George M., 2007. "Fractional dynamics of systems with long-range space interaction and temporal memory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(2), pages 291-308.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:368:y:2006:i:1:p:38-54. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.