IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v502y2018icp563-569.html
   My bibliography  Save this article

Human dynamics in repurchase behavior based on comments mining

Author

Listed:
  • Yang, Tian
  • Feng, Xin
  • Wu, Ye
  • Wang, Shengfeng
  • Xiao, Jinghua

Abstract

Hundreds of thousands of individual deals and comments are analyzed to ask: what kinds of patterns appear in their repurchase process? Our results suggest that, in the empirical description, the intervals between two consecutive purchases obey a power-law distribution. Notwithstanding a wide range of individual preferences, shoppers’ repurchase behaviors show some similar patterns, called long-scale quiet and short-scale emergence, and the alternating appearance of them form an endless chain in repurchase. In agreement with the empirical results, these short-scale and long-scale patterns suggest an adaptive model with alterable exponents complying with a power-law distribution. And it also implies that each user behaves his own intrinsic pattern such as unique repurchase intensity and silence-emergence cycle, which contributes to customer life-time value from the new view of dynamics and repurchase cycles.

Suggested Citation

  • Yang, Tian & Feng, Xin & Wu, Ye & Wang, Shengfeng & Xiao, Jinghua, 2018. "Human dynamics in repurchase behavior based on comments mining," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 563-569.
  • Handle: RePEc:eee:phsmap:v:502:y:2018:i:c:p:563-569
    DOI: 10.1016/j.physa.2018.02.137
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118301936
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.02.137?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Nan-Nan & Zhang, Ning & Zhou, Tao, 2008. "Empirical analysis on temporal statistics of human correspondence patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(25), pages 6391-6394.
    2. Peng, Dan & Han, Xiao-Pu & Wei, Zong-Wen & Wang, Bing-Hong, 2015. "Punctuated equilibrium dynamics in human communications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 36-44.
    3. Mryglod, O. & Fuchs, B. & Szell, M. & Holovatch, Yu. & Thurner, S., 2015. "Interevent time distributions of human multi-level activity in a virtual world," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 681-690.
    4. Vazquez, Alexei, 2007. "Impact of memory on human dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 373(C), pages 747-752.
    5. Hu, Hai-Bo & Han, Ding-Yi, 2008. "Empirical analysis of individual popularity and activity on an online music service system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(23), pages 5916-5921.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hwang, Syjung & Kim, Jina & Park, Eunil & Kwon, Sang Jib, 2020. "Who will be your next customer: A machine learning approach to customer return visits in airline services," Journal of Business Research, Elsevier, vol. 121(C), pages 121-126.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Zhi & Peng, Qinke & Lv, Jia & Zhong, Tao, 2017. "Analyzing the posting behaviors in news forums with incremental inter-event time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 203-212.
    2. Yan, Qiang & Yi, Lanli & Wu, Lianren, 2012. "Human dynamic model co-driven by interest and social identity in the MicroBlog community," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1540-1545.
    3. Lin, Zhenquan & Meng, Fan, 2018. "Empirical analysis on the runners’ velocity distribution in city marathons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 533-541.
    4. Ying Li & Hongduo Cao & Ying Zhang & Beibei Li, 2018. "Characteristics of Human Behavior in an Online Society," SAGE Open, , vol. 8(2), pages 21582440187, May.
    5. Zhou, Bin & Xie, Jia-Rong & Yan, Xiao-Yong & Wang, Nianxin & Wang, Bing-Hong, 2017. "A model of task-deletion mechanism based on the priority queueing system of Barabási," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 415-421.
    6. Zhang, Xin & Xie, Sheng & Vilela, André L.M. & Stanley, H. Eugene, 2019. "Inter-event time interval analysis of organizational-level activity: Venture capital market case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 346-355.
    7. Picoli, Sergio & Bombo, Giorgio & Santos, Edenize S.D. & Deprá, Pedro P. & Mendes, Renio S., 2022. "Characterizing postural sway signals by the analysis of zero-crossing patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    8. Cao, Shihao & Wang, Zhihua & Liu, Chengrui & Wu, Qiong & Li, Junxing & Ouyang, Xiangmin, 2023. "A novel solution for comprehensive competing failure process considering two-phase degradation and non-Poisson shock," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    9. Wang, Shengfeng & Feng, Xin & Wu, Ye & Xiao, Jinhua, 2017. "Double dynamic scaling in human communication dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 313-318.
    10. Young Bin Kim & Nuri Park & Qimeng Zhang & Jun Gi Kim & Shin Jin Kang & Chang Hun Kim, 2016. "Predicting Virtual World User Population Fluctuations with Deep Learning," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-12, December.
    11. Tang, Da-Hai & Han, Xiao-Pu & Wang, Bing-Hong, 2010. "Stretched exponential distribution of recurrent time of wars in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(13), pages 2637-2641.
    12. Wang, Peng & Ma, Qiang, 2017. "From heavy-tailed to exponential distribution of interevent time in cellphone top-up behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 10-17.
    13. Li, Mingjie & Orgun, Mehmet A. & Xiao, Jinghua & Zhong, Weicai & Xue, Liyin, 2012. "The impact of human activity patterns on asymptomatic infectious processes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(14), pages 3718-3728.
    14. Pongnumkul, Suchit & Motohashi, Kazuyuki, 2018. "A bipartite fitness model for online music streaming services," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1125-1137.
    15. Peng, Dan & Han, Xiao-Pu & Wei, Zong-Wen & Wang, Bing-Hong, 2015. "Punctuated equilibrium dynamics in human communications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 36-44.
    16. Nicolò Pagan & Wenjun Mei & Cheng Li & Florian Dörfler, 2021. "A meritocratic network formation model for the rise of social media influencers," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    17. Yan, Qiang & Wu, Lianren & Zheng, Lan, 2013. "Social network based microblog user behavior analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(7), pages 1712-1723.
    18. Young Bin Kim & Kyeongpil Kang & Jaegul Choo & Shin Jin Kang & TaeHyeong Kim & JaeHo Im & Jong-Hyun Kim & Chang Hun Kim, 2017. "Predicting the Currency Market in Online Gaming via Lexicon-Based Analysis on Its Online Forum," Complexity, Hindawi, vol. 2017, pages 1-10, December.
    19. Li, Kai & Lv, Tianyang & Shen, Huawei & Qiao, Lisheng & Chen, Enhong & Cheng, Xueqi & Sun, Zhi, 2020. "An empirical analysis on the behavioral differentia of the “Elite-Civilian” users in Sina microblog," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    20. Guo, Shengyu & Zhang, Pan & Ding, Lieyun, 2019. "Time-statistical laws of workers’ unsafe behavior in the construction industry: A case study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 419-429.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:502:y:2018:i:c:p:563-569. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.