IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v419y2015icp681-690.html
   My bibliography  Save this article

Interevent time distributions of human multi-level activity in a virtual world

Author

Listed:
  • Mryglod, O.
  • Fuchs, B.
  • Szell, M.
  • Holovatch, Yu.
  • Thurner, S.

Abstract

Studying human behavior in virtual environments provides extraordinary opportunities for a quantitative analysis of social phenomena with levels of accuracy that approach those of the natural sciences. In this paper we use records of player activities in the massive multiplayer online game Pardus over 1238 consecutive days, and analyze dynamical features of sequences of actions of players. We build on previous work where temporal structures of human actions of the same type were quantified, and provide an empirical understanding of human actions of different types. This study of multi-level human activity can be seen as a dynamic counterpart of static multiplex network analysis. We show that the interevent time distributions of actions in the Pardus universe follow highly non-trivial distribution functions, from which we extract action-type specific characteristic “decay constants”. We discuss characteristic features of interevent time distributions, including periodic patterns on different time scales, bursty dynamics, and various functional forms on different time scales. We comment on gender differences of players in emotional actions, and find that while males and females act similarly when performing some positive actions, females are slightly faster for negative actions. We also observe effects on the age of players: more experienced players are generally faster in making decisions about engaging in and terminating enmity and friendship, respectively.

Suggested Citation

  • Mryglod, O. & Fuchs, B. & Szell, M. & Holovatch, Yu. & Thurner, S., 2015. "Interevent time distributions of human multi-level activity in a virtual world," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 681-690.
  • Handle: RePEc:eee:phsmap:v:419:y:2015:i:c:p:681-690
    DOI: 10.1016/j.physa.2014.09.056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114008243
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.09.056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Young Bin Kim & Nuri Park & Qimeng Zhang & Jun Gi Kim & Shin Jin Kang & Chang Hun Kim, 2016. "Predicting Virtual World User Population Fluctuations with Deep Learning," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-12, December.
    2. Sun, Zhi & Peng, Qinke & Lv, Jia & Zhong, Tao, 2017. "Analyzing the posting behaviors in news forums with incremental inter-event time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 203-212.
    3. Picoli, Sergio & Bombo, Giorgio & Santos, Edenize S.D. & Deprá, Pedro P. & Mendes, Renio S., 2022. "Characterizing postural sway signals by the analysis of zero-crossing patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    4. Yang, Tian & Feng, Xin & Wu, Ye & Wang, Shengfeng & Xiao, Jinghua, 2018. "Human dynamics in repurchase behavior based on comments mining," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 563-569.
    5. Zhang, Xin & Xie, Sheng & Vilela, André L.M. & Stanley, H. Eugene, 2019. "Inter-event time interval analysis of organizational-level activity: Venture capital market case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 346-355.
    6. Young Bin Kim & Kyeongpil Kang & Jaegul Choo & Shin Jin Kang & TaeHyeong Kim & JaeHo Im & Jong-Hyun Kim & Chang Hun Kim, 2017. "Predicting the Currency Market in Online Gaming via Lexicon-Based Analysis on Its Online Forum," Complexity, Hindawi, vol. 2017, pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:419:y:2015:i:c:p:681-690. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.