IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v496y2018icp371-383.html
   My bibliography  Save this article

Lie symmetry analysis, explicit solutions and conservation laws for the space–time fractional nonlinear evolution equations

Author

Listed:
  • Inc, Mustafa
  • Yusuf, Abdullahi
  • Aliyu, Aliyu Isa
  • Baleanu, Dumitru

Abstract

This paper studies the symmetry analysis, explicit solutions, convergence analysis, and conservation laws (Cls) for two different space–time fractional nonlinear evolution equations with Riemann–Liouville (RL) derivative. The governing equations are reduced to nonlinear ordinary differential equation (ODE) of fractional order using their Lie point symmetries. In the reduced equations, the derivative is in Erdelyi–Kober (EK) sense, power series technique is applied to derive an explicit solutions for the reduced fractional ODEs. The convergence of the obtained power series solutions is also presented. Moreover, the new conservation theorem and the generalization of the Noether operators are developed to construct the nonlocal Cls for the equations . Some interesting figures for the obtained explicit solutions are presented.

Suggested Citation

  • Inc, Mustafa & Yusuf, Abdullahi & Aliyu, Aliyu Isa & Baleanu, Dumitru, 2018. "Lie symmetry analysis, explicit solutions and conservation laws for the space–time fractional nonlinear evolution equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 371-383.
  • Handle: RePEc:eee:phsmap:v:496:y:2018:i:c:p:371-383
    DOI: 10.1016/j.physa.2017.12.119
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117313687
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.12.119?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ali, Khalid K. & Nuruddeen, R.I. & Raslan, K.R., 2018. "New structures for the space-time fractional simplified MCH and SRLW equations," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 304-309.
    2. Inc, Mustafa & Yusuf, Abdullahi & Isa Aliyu, Aliyu & Baleanu, Dumitru, 2018. "Time-fractional Cahn–Allen and time-fractional Klein–Gordon equations: Lie symmetry analysis, explicit solutions and convergence analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 94-106.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aljohani, A.F. & Hussain, Q. & Zaman, F.D. & Kara, A.H., 2021. "On a study of some classes of the fourth-order KdV–Klein/Gordon equation and its time fractional forms," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    2. Aljohani, A.F. & Alqurashi, Bader Mutair & Kara, A.H., 2021. "Solitons, travelling waves, invariance, conservation laws and ‘approximate’ conservation of the extended Jimbo-Miwa equation," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    3. Zhang, Yi, 2019. "Lie symmetry and invariants for a generalized Birkhoffian system on time scales," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 306-312.
    4. Inc, Mustafa & Yusuf, Abdullahi & Aliyu, Aliyu Isa & Baleanu, Dumitru, 2018. "Investigation of the logarithmic-KdV equation involving Mittag-Leffler type kernel with Atangana–Baleanu derivative," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 520-531.
    5. Fan Qin & Wei Feng & Songlin Zhao, 2022. "Lie Symmetry Group, Invariant Subspace, and Conservation Law for the Time-Fractional Derivative Nonlinear Schrödinger Equation," Mathematics, MDPI, vol. 10(13), pages 1-15, June.
    6. Khalique, Chaudry Masood & Motsepa, Tanki, 2018. "Lie symmetries, group-invariant solutions and conservation laws of the Vasicek pricing equation of mathematical finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 871-879.
    7. Yusuf, Abdullahi & Inc, Mustafa & Isa Aliyu, Aliyu & Baleanu, Dumitru, 2018. "Efficiency of the new fractional derivative with nonsingular Mittag-Leffler kernel to some nonlinear partial differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 220-226.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stanislav Yu. Lukashchuk, 2022. "On the Property of Linear Autonomy for Symmetries of Fractional Differential Equations and Systems," Mathematics, MDPI, vol. 10(13), pages 1-17, July.
    2. Zhang, Zhi-Yong & Li, Guo-Fang, 2020. "Lie symmetry analysis and exact solutions of the time-fractional biological population model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    3. Ali, Khalid K. & Cattani, Carlo & Gómez-Aguilar, J.F. & Baleanu, Dumitru & Osman, M.S., 2020. "Analytical and numerical study of the DNA dynamics arising in oscillator-chain of Peyrard-Bishop model," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    4. Khalique, Chaudry Masood & Motsepa, Tanki, 2018. "Lie symmetries, group-invariant solutions and conservation laws of the Vasicek pricing equation of mathematical finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 871-879.
    5. Yusuf, Abdullahi & Inc, Mustafa & Isa Aliyu, Aliyu & Baleanu, Dumitru, 2018. "Efficiency of the new fractional derivative with nonsingular Mittag-Leffler kernel to some nonlinear partial differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 220-226.
    6. Mohammadizadeh, Fatemeh & Rashidi, Saeede & Hejazi, S. Reza, 2021. "Space–time fractional Klein-Gordon equation: Symmetry analysis, conservation laws and numerical approximations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 476-497.
    7. Berhe, Hailay Weldegiorgis & Qureshi, Sania & Shaikh, Asif Ali, 2020. "Deterministic modeling of dysentery diarrhea epidemic under fractional Caputo differential operator via real statistical analysis," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    8. Emadifar, Homan & Nonlaopon, Kamsing & Muhammad, Shoaib & Nuruddeen, Rahmatullah Ibrahim & Kim, Hwajoon & Ahmad, Abdulaziz Garba, 2023. "Analytical investigation of the coupled fractional models for immersed spheres and oscillatory pendulums," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    9. Inc, Mustafa & Yusuf, Abdullahi & Aliyu, Aliyu Isa & Baleanu, Dumitru, 2018. "Investigation of the logarithmic-KdV equation involving Mittag-Leffler type kernel with Atangana–Baleanu derivative," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 520-531.
    10. Jeong, Darae & Li, Yibao & Choi, Yongho & Lee, Chaeyoung & Yang, Junxiang & Kim, Junseok, 2021. "A practical adaptive grid method for the Allen–Cahn equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    11. Hashemizadeh, E. & Ebrahimzadeh, A., 2018. "An efficient numerical scheme to solve fractional diffusion-wave and fractional Klein–Gordon equations in fluid mechanics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1189-1203.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:496:y:2018:i:c:p:371-383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.