IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v106y2018icp304-309.html
   My bibliography  Save this article

New structures for the space-time fractional simplified MCH and SRLW equations

Author

Listed:
  • Ali, Khalid K.
  • Nuruddeen, R.I.
  • Raslan, K.R.

Abstract

In this paper, we constructed new solitary structures for the space-time fractional simplified modified Camassa-Holm (MCH) equation and space-time fractional symmetric regularized long wave (SRLW) equation using the modified extended tanh method. The space-time fractional derivatives are defined in the sense of the new conformable fractional derivative. Further, with the help of Mathematica software, the set of over-determined algebraic equations obtained after reducing the equations to ordinary differentials equations are treated. We finally provide graphical illustrations for some structures.

Suggested Citation

  • Ali, Khalid K. & Nuruddeen, R.I. & Raslan, K.R., 2018. "New structures for the space-time fractional simplified MCH and SRLW equations," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 304-309.
  • Handle: RePEc:eee:chsofr:v:106:y:2018:i:c:p:304-309
    DOI: 10.1016/j.chaos.2017.11.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077917305015
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2017.11.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emadifar, Homan & Nonlaopon, Kamsing & Muhammad, Shoaib & Nuruddeen, Rahmatullah Ibrahim & Kim, Hwajoon & Ahmad, Abdulaziz Garba, 2023. "Analytical investigation of the coupled fractional models for immersed spheres and oscillatory pendulums," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    2. Ali, Khalid K. & Cattani, Carlo & Gómez-Aguilar, J.F. & Baleanu, Dumitru & Osman, M.S., 2020. "Analytical and numerical study of the DNA dynamics arising in oscillator-chain of Peyrard-Bishop model," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    3. Inc, Mustafa & Yusuf, Abdullahi & Aliyu, Aliyu Isa & Baleanu, Dumitru, 2018. "Lie symmetry analysis, explicit solutions and conservation laws for the space–time fractional nonlinear evolution equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 371-383.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:106:y:2018:i:c:p:304-309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.