IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v492y2018icp994-1006.html
   My bibliography  Save this article

Quantile based Tsallis entropy in residual lifetime

Author

Listed:
  • Khammar, A.H.
  • Jahanshahi, S.M.A.

Abstract

Tsallis entropy is a generalization of type α of the Shannon entropy, that is a nonadditive entropy unlike the Shannon entropy. Shannon entropy may be negative for some distributions, but Tsallis entropy can always be made nonnegative by choosing appropriate value of α. In this paper, we derive the quantile form of this nonadditive’s entropy function in the residual lifetime, namely the residual quantile Tsallis entropy (RQTE) and get the bounds for it, depending on the Renyi’s residual quantile entropy. Also, we obtain relationship between RQTE and concept of proportional hazards model in the quantile setup. Based on the new measure, we propose a stochastic order and aging classes, and study its properties. Finally, we prove characterizations theorems for some well known lifetime distributions. It is shown that RQTE uniquely determines the parent distribution unlike the residual Tsallis entropy.

Suggested Citation

  • Khammar, A.H. & Jahanshahi, S.M.A., 2018. "Quantile based Tsallis entropy in residual lifetime," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 994-1006.
  • Handle: RePEc:eee:phsmap:v:492:y:2018:i:c:p:994-1006
    DOI: 10.1016/j.physa.2017.11.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117311032
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.11.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaozhuan Gao & Yong Deng, 2019. "The generalization negation of probability distribution and its application in target recognition based on sensor fusion," International Journal of Distributed Sensor Networks, , vol. 15(5), pages 15501477198, May.
    2. Kayal, Suchandan, 2018. "Quantile-based cumulative inaccuracy measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 329-344.
    3. Aswathy S. Krishnan & S. M. Sunoj & P. G. Sankaran, 2019. "Quantile-based reliability aspects of cumulative Tsallis entropy in past lifetime," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(1), pages 17-38, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:492:y:2018:i:c:p:994-1006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.