IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v492y2018icp2166-2197.html
   My bibliography  Save this article

A novel multilayer model for missing link prediction and future link forecasting in dynamic complex networks

Author

Listed:
  • Yasami, Yasser
  • Safaei, Farshad

Abstract

The traditional complex network theory is particularly focused on network models in which all network constituents are dealt with equivalently, while fail to consider the supplementary information related to the dynamic properties of the network interactions. This is a main constraint leading to incorrect descriptions of some real-world phenomena or incomplete capturing the details of certain real-life problems. To cope with the problem, this paper addresses the multilayer aspects of dynamic complex networks by analyzing the properties of intrinsically multilayered co-authorship networks, DBLP and Astro Physics, and presenting a novel multilayer model of dynamic complex networks. The model examines the layers evolution (layers birth/death process and lifetime) throughout the network evolution. Particularly, this paper models the evolution of each node’s membership in different layers by an Infinite Factorial Hidden Markov Model considering feature cascade, and thereby formulates the link generation process for intra-layer and inter-layer links. Although adjacency matrixes are useful to describe the traditional single-layer networks, such a representation is not sufficient to describe and analyze the multilayer dynamic networks. This paper also extends a generalized mathematical infrastructure to address the problems issued by multilayer complex networks. The model inference is performed using some Markov Chain Monte Carlo sampling strategies, given synthetic and real complex networks data. Experimental results indicate a tremendous improvement in the performance of the proposed multilayer model in terms of sensitivity, specificity, positive and negative predictive values, positive and negative likelihood ratios, F1-score, Matthews correlation coefficient, and accuracy for two important applications of missing link prediction and future link forecasting. The experimental results also indicate the strong predictivepower of the proposed model for the application of cascade prediction in terms of accuracy.

Suggested Citation

  • Yasami, Yasser & Safaei, Farshad, 2018. "A novel multilayer model for missing link prediction and future link forecasting in dynamic complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 2166-2197.
  • Handle: RePEc:eee:phsmap:v:492:y:2018:i:c:p:2166-2197
    DOI: 10.1016/j.physa.2017.11.134
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117312116
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.11.134?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xie He & Amir Ghasemian & Eun Lee & Aaron Clauset & Peter J. Mucha, 2024. "Sequential stacking link prediction algorithms for temporal networks," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Aghabozorgi, Farshad & Khayyambashi, Mohammad Reza, 2018. "A new similarity measure for link prediction based on local structures in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 12-23.
    3. Mingyu Nan & Yifan Zhu & Jie Zhang & Tao Wang & Xin Zhou, 2022. "MSGWO-MKL-SVM: A Missing Link Prediction Method for UAV Swarm Network Based on Time Series," Mathematics, MDPI, vol. 10(14), pages 1-29, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:492:y:2018:i:c:p:2166-2197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.