IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v482y2017icp243-248.html
   My bibliography  Save this article

On the relation between implied and realized volatility indices: Evidence from the BRIC countries

Author

Listed:
  • Bentes, Sónia R.

Abstract

This paper investigates the relation between implied (IV) and realized volatility (RV). Using monthly data from the BRIC countries, we assess the informational content of IV in explaining future RV as well as its unbiasedness and efficiency. We employ an ADL (Autoregressive Distributed Lag) and the corresponding EC (Error Correction) model and compare the results with the ones obtained from the OLS regression. Our goal is to assess the fully dynamical relations between these variables and to separate the short from the long-run effects. We found different results for the informational content of IV according to the methodologies used. However, both methods show that IV is an unbiased estimate of RV for India and that IV was not found to be efficient in any of the BRIC countries. Further, EC results reveal the presence of short and long-run effects for India, whereas Russia exhibits only short-run adjustments.

Suggested Citation

  • Bentes, Sónia R., 2017. "On the relation between implied and realized volatility indices: Evidence from the BRIC countries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 243-248.
  • Handle: RePEc:eee:phsmap:v:482:y:2017:i:c:p:243-248
    DOI: 10.1016/j.physa.2017.04.071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117303813
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.04.071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Agnolucci, Paolo, 2009. "Volatility in crude oil futures: A comparison of the predictive ability of GARCH and implied volatility models," Energy Economics, Elsevier, vol. 31(2), pages 316-321, March.
    2. Hsu, Stephen D.H. & Murray, Brian M., 2007. "On the volatility of volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 366-376.
    3. Nam, Seung Oh & Oh, SeungYoung & Kim, Hyun Kyung & Kim, Byung Chun, 2006. "An empirical analysis of the price discovery and the pricing bias in the KOSPI 200 stock index derivatives markets," International Review of Financial Analysis, Elsevier, vol. 15(4-5), pages 398-414.
    4. Charles J. Corrado & Thomas W. Miller, Jr., 2005. "The forecast quality of CBOE implied volatility indexes," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 25(4), pages 339-373, April.
    5. Blair, Bevan J. & Poon, Ser-Huang & Taylor, Stephen J., 2001. "Forecasting S&P 100 volatility: the incremental information content of implied volatilities and high-frequency index returns," Journal of Econometrics, Elsevier, vol. 105(1), pages 5-26, November.
    6. Christensen, B. J. & Prabhala, N. R., 1998. "The relation between implied and realized volatility," Journal of Financial Economics, Elsevier, vol. 50(2), pages 125-150, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leovardo Mata Mata & José Antonio Núñez Mora & Ramona Serrano Bautista, 2021. "Multivariate Distribution in the Stock Markets of Brazil, Russia, India, and China," SAGE Open, , vol. 11(2), pages 21582440211, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bentes, Sónia R., 2015. "A comparative analysis of the predictive power of implied volatility indices and GARCH forecasted volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 105-112.
    2. Bentes, Sonia R & Menezes, Rui, 2012. "On the predictive power of implied volatility indexes: A comparative analysis with GARCH forecasted volatility," MPRA Paper 42193, University Library of Munich, Germany.
    3. Viteva, Svetlana & Veld-Merkoulova, Yulia V. & Campbell, Kevin, 2014. "The forecasting accuracy of implied volatility from ECX carbon options," Energy Economics, Elsevier, vol. 45(C), pages 475-484.
    4. Florian Ielpo & Benoît Sévi, 2014. "Forecasting the density of oil futures," Working Papers 2014-601, Department of Research, Ipag Business School.
    5. Parhizgari, A.M. & Padungsaksawasdi, Chaiyuth, 2021. "Global equity market leadership positions through implied volatility measures," Journal of Empirical Finance, Elsevier, vol. 61(C), pages 180-205.
    6. Kim, Jun Sik & Ryu, Doojin, 2015. "Are the KOSPI 200 implied volatilities useful in value-at-risk models?," Emerging Markets Review, Elsevier, vol. 22(C), pages 43-64.
    7. Bentes, Sonia R. & Menezes, Rui, 2013. "On the predictability of realized volatility using feasible GLS," Journal of Asian Economics, Elsevier, vol. 28(C), pages 58-66.
    8. Athanasia Gavala & Nikolay Gospodinov & Deming Jiang, 2006. "Forecasting volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(6), pages 381-400.
    9. Heejoon Han & Myung D. Park, 2013. "Comparison of Realized Measure and Implied Volatility in Forecasting Volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(6), pages 522-533, September.
    10. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    11. Stavros Degiannakis, George Filis, and Renatas Kizys, 2014. "The Effects of Oil Price Shocks on Stock Market Volatility: Evidence from European Data," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    12. Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005. "Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
    13. Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil price realized volatility using information channels from other asset classes," Journal of International Money and Finance, Elsevier, vol. 76(C), pages 28-49.
    14. Leonidas S. Rompolis & Elias Tzavalis, 2010. "Risk Premium Effects On Implied Volatility Regressions," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 33(2), pages 125-151, June.
    15. Chen, Hongtao & Liu, Li & Li, Xiaolei, 2018. "The predictive content of CBOE crude oil volatility index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 837-850.
    16. Li, Chenxing & Zhang, Zehua & Zhao, Ran, 2024. "Volatility or higher moments: Which is more important in return density forecasts of stochastic volatility model?," Finance Research Letters, Elsevier, vol. 67(PB).
    17. Adam Clements & Ralf Becker, 2009. "A nonparametric approach to forecasting realized volatility," NCER Working Paper Series 43, National Centre for Econometric Research.
    18. Bent Jesper Christensen & Morten Ø. Nielsen, 2005. "The Implied-realized Volatility Relation With Jumps In Underlying Asset Prices," Working Paper 1186, Economics Department, Queen's University.
    19. DeMiguel, Victor & Plyakha, Yuliya & Uppal, Raman & Vilkov, Grigory, 2013. "Improving Portfolio Selection Using Option-Implied Volatility and Skewness," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 48(6), pages 1813-1845, December.
    20. Gael M. Martin & Andrew Reidy & Jill Wright, 2009. "Does the option market produce superior forecasts of noise-corrected volatility measures?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(1), pages 77-104.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:482:y:2017:i:c:p:243-248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.