IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v471y2017icp724-732.html
   My bibliography  Save this article

Stochastic effects in a discretized kinetic model of economic exchange

Author

Listed:
  • Bertotti, M.L.
  • Chattopadhyay, A.K.
  • Modanese, G.

Abstract

Linear stochastic models and discretized kinetic theory are two complementary analytical techniques used for the investigation of complex systems of economic interactions. The former employ Langevin equations, with an emphasis on stock trade; the latter is based on systems of ordinary differential equations and is better suited for the description of binary interactions, taxation and welfare redistribution. We propose a new framework which establishes a connection between the two approaches by introducing random fluctuations into the kinetic model based on Langevin and Fokker–Planck formalisms. Numerical simulations of the resulting model indicate positive correlations between the Gini index and the total wealth, that suggest a growing inequality with increasing income. Further analysis shows, in the presence of a conserved total wealth, a simultaneous decrease in inequality as social mobility increases, in conformity with economic data.

Suggested Citation

  • Bertotti, M.L. & Chattopadhyay, A.K. & Modanese, G., 2017. "Stochastic effects in a discretized kinetic model of economic exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 724-732.
  • Handle: RePEc:eee:phsmap:v:471:y:2017:i:c:p:724-732
    DOI: 10.1016/j.physa.2016.12.072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116310512
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.12.072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chattopadhyay, Amit K. & Mallick, Sushanta K., 2007. "Income distribution dependence of poverty measure: A theoretical analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(1), pages 241-252.
    2. Fabio Clementi & Mauro Gallegati & Giorgio Kaniadakis, 2010. "A model of personal income distribution with application to Italian data," Empirical Economics, Springer, vol. 39(2), pages 559-591, October.
    3. Dollar, David & Kraay, Aart, 2002. "Growth Is Good for the Poor," Journal of Economic Growth, Springer, vol. 7(3), pages 195-225, September.
    4. Dan Andrews & Andrew Leigh, 2009. "More inequality, less social mobility," Applied Economics Letters, Taylor & Francis Journals, vol. 16(15), pages 1489-1492.
    5. Branko Milanovic, 2014. "The Return of "Patrimonial Capitalism": A Review of Thomas Piketty's Capital in the Twenty-First Century," Journal of Economic Literature, American Economic Association, vol. 52(2), pages 519-534, June.
    6. Miles Corak, 2013. "Income Inequality, Equality of Opportunity, and Intergenerational Mobility," Journal of Economic Perspectives, American Economic Association, vol. 27(3), pages 79-102, Summer.
    7. Maria Letizia Bertotti & Giovanni Modanese, 2014. "Micro to macro models for income distribution in the absence and in the presence of tax evasion," Papers 1403.0015, arXiv.org.
    8. Schinckus, C., 2013. "Between complexity of modelling and modelling of complexity: An essay on econophysics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3654-3665.
    9. Jean-Philippe Bouchaud & Marc Mezard, 2000. "Wealth condensation in a simple model of economy," Science & Finance (CFM) working paper archive 500026, Science & Finance, Capital Fund Management.
    10. Kaniadakis, G., 2001. "Non-linear kinetics underlying generalized statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 296(3), pages 405-425.
    11. Atkinson, Anthony B., 2015. "Inequality: what can be done?," LSE Research Online Documents on Economics 101810, London School of Economics and Political Science, LSE Library.
    12. Diego Garlaschelli & Maria I. Loffredo, 2007. "Effects of network topology on wealth distributions," Papers 0711.4710, arXiv.org, revised Jan 2008.
    13. Branko Milanovic, 2014. "The Return of "Patrimonial Capitalism": A Review of Thomas Piketty's Capital in the Twenty-First Century," Journal of Economic Literature, American Economic Association, vol. 52(2), pages 519-534, June.
    14. M. Bertotti & G. Modanese, 2012. "Exploiting the flexibility of a family of models for taxation and redistribution," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 85(8), pages 1-10, August.
    15. Bouchaud, Jean-Philippe & Mézard, Marc, 2000. "Wealth condensation in a simple model of economy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 282(3), pages 536-545.
    16. Pareschi, Lorenzo & Toscani, Giuseppe, 2013. "Interacting Multiagent Systems: Kinetic equations and Monte Carlo methods," OUP Catalogue, Oxford University Press, number 9780199655465.
    17. Jean-Philippe Bouchaud, 2009. "The (unfortunate) complexity of the economy," Papers 0904.0805, arXiv.org.
    18. Maria Letizia Bertotti & Giovanni Modanese, 2011. "From microscopic taxation and redistribution models to macroscopic income distributions," Papers 1109.0606, arXiv.org.
    19. Bertotti, Maria Letizia & Modanese, Giovanni, 2011. "From microscopic taxation and redistribution models to macroscopic income distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3782-3793.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aydiner, Ekrem & Cherstvy, Andrey G. & Metzler, Ralf, 2018. "Wealth distribution, Pareto law, and stretched exponential decay of money: Computer simulations analysis of agent-based models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 278-288.
    2. Maria Letizia Bertotti & Amit K Chattopadhyay & Giovanni Modanese, 2017. "Economic inequality and mobility for stochastic models with multiplicative noise," Papers 1702.08391, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Letizia Bertotti & Amit K Chattopadhyay & Giovanni Modanese, 2017. "Economic inequality and mobility for stochastic models with multiplicative noise," Papers 1702.08391, arXiv.org.
    2. Maria Letizia Bertotti & Giovanni Modanese, 2015. "Economic inequality and mobility in kinetic models for social sciences," Papers 1504.03232, arXiv.org.
    3. M. L. Bertotti & G. Modanese, 2016. "Mathematical models describing the effects of different tax evasion behaviors," Papers 1701.02662, arXiv.org.
    4. M. L. Bertotti & G. Modanese, 2018. "Mathematical models describing the effects of different tax evasion behaviors," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(2), pages 351-363, July.
    5. Venkatasubramanian, Venkat & Luo, Yu & Sethuraman, Jay, 2015. "How much inequality in income is fair? A microeconomic game theoretic perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 435(C), pages 120-138.
    6. Silvia Mendolia & Peter Siminski, 2016. "New Estimates of Intergenerational Mobility in Australia," The Economic Record, The Economic Society of Australia, vol. 92(298), pages 361-373, September.
    7. Wang, Lingling & Lai, Shaoyong & Sun, Rongmei, 2022. "Optimal control about multi-agent wealth exchange and decision-making competence," Applied Mathematics and Computation, Elsevier, vol. 417(C).
    8. Chami Figueira, F. & Moura, N.J. & Ribeiro, M.B., 2011. "The Gompertz–Pareto income distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(4), pages 689-698.
    9. Sebastian Guala, 2009. "Taxes in a Wealth Distribution Model by Inelastically Scattering of Particles," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 7(1), pages 1-7.
    10. Maximilian Beikirch & Simon Cramer & Martin Frank & Philipp Otte & Emma Pabich & Torsten Trimborn, 2020. "Robust Mathematical Formulation And Probabilistic Description Of Agent-Based Computational Economic Market Models," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 23(06), pages 1-41, September.
    11. Marco Torregrossa & Giuseppe Toscani, 2017. "Wealth distribution in presence of debts. A Fokker--Planck description," Papers 1709.09858, arXiv.org.
    12. Nicolas Brisset & Benoît Walraevens, 2021. "From Capital to Property: History and Justice in the Work of Thomas Piketty," GREDEG Working Papers 2021-28, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France.
    13. Kemp, Jordan T. & Bettencourt, Luís M.A., 2022. "Statistical dynamics of wealth inequality in stochastic models of growth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    14. G. Dimarco & L. Pareschi & G. Toscani & M. Zanella, 2020. "Wealth distribution under the spread of infectious diseases," Papers 2004.13620, arXiv.org.
    15. Fabio CLEMENTI & Mauro GALLEGATI, 2017. "NEW ECONOMIC WINDOWS ON INCOME AND WEALTH: THE k-GENERALIZED FAMILY OF DISTRIBUTIONS," Journal of Social and Economic Statistics, Bucharest University of Economic Studies, vol. 6(1), pages 1-15, JULY.
    16. Gualandi, Stefano & Toscani, Giuseppe, 2018. "Pareto tails in socio-economic phenomena: A kinetic description," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 12, pages 1-17.
    17. Aydiner, Ekrem & Cherstvy, Andrey G. & Metzler, Ralf, 2018. "Wealth distribution, Pareto law, and stretched exponential decay of money: Computer simulations analysis of agent-based models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 278-288.
    18. Stojkoski, Viktor & Karbevski, Marko & Utkovski, Zoran & Basnarkov, Lasko & Kocarev, Ljupco, 2021. "Evolution of cooperation in networked heterogeneous fluctuating environments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    19. Eunkyung Lee & Yeosun Yoon, 2022. "Heading Up or Stuck Down Here? The Effect of Perceived Economic Mobility on Subjective Social Status and Brand Identification," SAGE Open, , vol. 12(3), pages 21582440221, September.
    20. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:471:y:2017:i:c:p:724-732. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.