IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v467y2017icp267-276.html
   My bibliography  Save this article

The use of the multi-cumulant tensor analysis for the algorithmic optimisation of investment portfolios

Author

Listed:
  • Domino, Krzysztof

Abstract

The cumulant analysis plays an important role in non Gaussian distributed data analysis. The shares’ prices returns are good example of such data. The purpose of this research is to develop the cumulant based algorithm and use it to determine eigenvectors that represent investment portfolios with low variability. Such algorithm is based on the Alternating Least Square method and involves the simultaneous minimisation 2’nd–6’th cumulants of the multidimensional random variable (percentage shares’ returns of many companies). Then the algorithm was tested during the recent crash on the Warsaw Stock Exchange. To determine incoming crash and provide enter and exit signal for the investment strategy the Hurst exponent was calculated using the local DFA. It was shown that introduced algorithm is on average better that benchmark and other portfolio determination methods, but only within examination window determined by low values of the Hurst exponent. Remark that the algorithm is based on cumulant tensors up to the 6’th order calculated for a multidimensional random variable, what is the novel idea. It can be expected that the algorithm would be useful in the financial data analysis on the world wide scale as well as in the analysis of other types of non Gaussian distributed data.

Suggested Citation

  • Domino, Krzysztof, 2017. "The use of the multi-cumulant tensor analysis for the algorithmic optimisation of investment portfolios," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 267-276.
  • Handle: RePEc:eee:phsmap:v:467:y:2017:i:c:p:267-276
    DOI: 10.1016/j.physa.2016.10.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116307294
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.10.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giovani L. Vasconcelos, 2004. "A Guided Walk Down Wall Street: an Introduction to Econophysics," Papers cond-mat/0408143, arXiv.org.
    2. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    3. Domino, Krzysztof, 2012. "The use of the Hurst exponent to investigate the global maximum of the Warsaw Stock Exchange WIG20 index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 156-169.
    4. Bertrand Maillet & Emmanuel Jurczenko, 2006. "Multi-moment Asset Allocation and Pricing Models," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00308990, HAL.
    5. Bertrand Maillet & Emmanuel Jurczenko, 2006. "Introduction to Multi-moment Asset Allocation and Pricing Models," Post-Print hal-00308991, HAL.
    6. Czarnecki, Łukasz & Grech, Dariusz & Pamuła, Grzegorz, 2008. "Comparison study of global and local approaches describing critical phenomena on the Polish stock exchange market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(27), pages 6801-6811.
    7. Grech, Dariusz & Pamuła, Grzegorz, 2008. "The local Hurst exponent of the financial time series in the vicinity of crashes on the Polish stock exchange market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(16), pages 4299-4308.
    8. Schwert, G William & Seguin, Paul J, 1990. "Heteroskedasticity in Stock Returns," Journal of Finance, American Finance Association, vol. 45(4), pages 1129-1155, September.
    9. Bertrand Maillet & Emmanuel Jurczenko, 2006. "Multi-moment Asset Allocation and Pricing Models," Post-Print hal-00308990, HAL.
    10. Bertrand Maillet & Emmanuel Jurczenko, 2006. "Introduction to Multi-moment Asset Allocation and Pricing Models," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00308991, HAL.
    11. Domino, Krzysztof, 2011. "The use of the Hurst exponent to predict changes in trends on the Warsaw Stock Exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(1), pages 98-109.
    12. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    13. Akgiray, Vedat, 1989. "Conditional Heteroscedasticity in Time Series of Stock Returns: Evidence and Forecasts," The Journal of Business, University of Chicago Press, vol. 62(1), pages 55-80, January.
    14. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    15. Juan C. Arismendi & Herbert Kimura, 2014. "Monte Carlo Approximate Tensor Moment Simulations," ICMA Centre Discussion Papers in Finance icma-dp2014-08, Henley Business School, University of Reading.
    16. Domino, Krzysztof & Błachowicz, Tomasz, 2014. "The use of copula functions for modeling the risk of investment in shares traded on the Warsaw Stock Exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 77-85.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Domino, Krzysztof, 2020. "Multivariate cumulants in outlier detection for financial data analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Domino, Krzysztof, 2020. "Multivariate cumulants in outlier detection for financial data analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    2. Krzysztof Domino, 2016. "The use of the multi-cumulant tensor analysis for the algorithmic optimisation of investment portfolios," Papers 1605.09181, arXiv.org, revised Aug 2016.
    3. Domino, Krzysztof & Błachowicz, Tomasz, 2015. "The use of copula functions for modeling the risk of investment in shares traded on world stock exchanges," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 142-151.
    4. Domino, Krzysztof & Błachowicz, Tomasz, 2014. "The use of copula functions for modeling the risk of investment in shares traded on the Warsaw Stock Exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 77-85.
    5. Faff, Robert W. & Hodgson, Allan & Saudagaran, Shahrokh, 2002. "International cross-listings towards more liquid markets: the impact on domestic firms," Journal of Multinational Financial Management, Elsevier, vol. 12(4-5), pages 365-390.
    6. Abdallah Ben Saida & Jean-luc Prigent, 2018. "On the robustness of portfolio allocation under copula misspecification," Annals of Operations Research, Springer, vol. 262(2), pages 631-652, March.
    7. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, September.
    8. León, Angel & Moreno, Manuel, 2017. "One-sided performance measures under Gram-Charlier distributions," Journal of Banking & Finance, Elsevier, vol. 74(C), pages 38-50.
    9. Hodgson, Douglas J & Vorkink, Keith P, 2003. "Efficient Estimation of Conditional Asset-Pricing Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(2), pages 269-283, April.
    10. Mukasa, Adamon N., 2018. "Technology adoption and risk exposure among smallholder farmers: Panel data evidence from Tanzania and Uganda," World Development, Elsevier, vol. 105(C), pages 299-309.
    11. Lu, Xin & Liu, Qiong & Xue, Fengxin, 2019. "Unique closed-form solutions of portfolio selection subject to mean-skewness-normalization constraints," Operations Research Perspectives, Elsevier, vol. 6(C).
    12. Domino, Krzysztof, 2012. "The use of the Hurst exponent to investigate the global maximum of the Warsaw Stock Exchange WIG20 index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 156-169.
    13. St. Pierre, Eileen F., 1998. "Estimating EGARCH-M models: Science or art?," The Quarterly Review of Economics and Finance, Elsevier, vol. 38(2), pages 167-180.
    14. Alexios Ghalanos & Eduardo Rossi & Giovanni Urga, 2015. "Independent Factor Autoregressive Conditional Density Model," Econometric Reviews, Taylor & Francis Journals, vol. 34(5), pages 594-616, May.
    15. Mukasa Adamon N., 2016. "Working Paper 233 - Technology Adoption and Risk Exposure among Smallholder Farmers: Panel Data Evidence from Tanzania and Uganda," Working Paper Series 2328, African Development Bank.
    16. Andreas Blöchlinger, 2018. "Credit Rating and Pricing: Poles Apart," JRFM, MDPI, vol. 11(2), pages 1-26, May.
    17. Torben G. Andersen & Tim Bollerslev, 1997. "Answering the Critics: Yes, ARCH Models Do Provide Good Volatility Forecasts," NBER Working Papers 6023, National Bureau of Economic Research, Inc.
    18. Wei-Han Liu, 2014. "Optimal hedge ratio estimation and hedge effectiveness with multivariate skew distributions," Applied Economics, Taylor & Francis Journals, vol. 46(12), pages 1420-1435, April.
    19. Eleni Constantinou & Robert Georgiades & Avo Kazandjian & George Kouretas, 2005. "Mean and variance causality between the Cyprus Stock Exchange and major equity markets," Working Papers 0501, University of Crete, Department of Economics.
    20. Pandey, Ajay, 2003. "Modeling and Forecasting Volatility in Indian Capital Markets," IIMA Working Papers WP2003-08-03, Indian Institute of Management Ahmedabad, Research and Publication Department.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:467:y:2017:i:c:p:267-276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.