IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v461y2016icp487-497.html
   My bibliography  Save this article

On the phase diagram of the extended Hubbard model with intersite density–density interactions in the atomic limit

Author

Listed:
  • Kapcia, Konrad Jerzy
  • Robaszkiewicz, Stanisław

Abstract

The charge ordering is a phenomenon associated with inhomogeneous distribution of electron density occurring mostly in strongly correlated materials such as transition metal oxides or organic conductors. The extended Hubbard model (EHM) is one of the simplest model for description of this phenomenon. The full phase diagram of the EHM with intersite density–density interactions W1 and W2 (nearest- and next-nearest-neighbour, respectively) in the atomic limit as a function of the chemical potential has been derived in the variational approach, which treats the on-site interaction exactly and the intersite interactions within mean-field approximation. The results for arbitrary values of model parameters (in the two-sublattice assumption) reveal that the diagram has very complex structure including various (multi-)critical points. A variety of the transitions between different phases, in particular with long-range charge-order, has been found to occur on the diagram. The results presented are rigorous ones in the high-dimension limit for any W1 and W2≤0.

Suggested Citation

  • Kapcia, Konrad Jerzy & Robaszkiewicz, Stanisław, 2016. "On the phase diagram of the extended Hubbard model with intersite density–density interactions in the atomic limit," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 487-497.
  • Handle: RePEc:eee:phsmap:v:461:y:2016:i:c:p:487-497
    DOI: 10.1016/j.physa.2016.05.056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116302485
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.05.056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. F. Mancini & F. P. Mancini, 2009. "Extended Hubbard model in the presence of a magnetic field," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 68(3), pages 341-351, April.
    2. A. Kalz & A. Honecker & S. Fuchs & T. Pruschke, 2008. "Phase diagram of the Ising square lattice with competing interactions," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 65(4), pages 533-537, October.
    3. Andrzej Ptok, 2014. "Influence of s ± symmetry on unconventional superconductivity in pnictides above the Pauli limit – two-band model study," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 87(1), pages 1-7, January.
    4. F. Mancini & F. P. Mancini, 2010. "Different orderings in the narrow-band limit of the extended Hubbard model on the Bethe lattice," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 73(4), pages 581-595, February.
    5. Kapcia, Konrad Jerzy & Murawski, Szymon & Kłobus, Waldemar & Robaszkiewicz, Stanisław, 2015. "Magnetic orderings and phase separations in a simple model of insulating systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 218-234.
    6. Ferdinando Mancini & Evgeny Plekhanov & Gerardo Sica, 2013. "Exact solution of the 1D Hubbard model with NN and NNN interactions in the narrow-band limit," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 86(10), pages 1-12, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balcerzak, T. & Szałowski, K., 2018. "Hubbard pair cluster in the external fields. Studies of the magnetic properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 395-406.
    2. Rossato, Leonardo C. & Zimmer, F.M. & Morais, C.V. & Schmidt, M., 2023. "The Ising bilayer honeycomb lattice: A cluster mean-field study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 621(C).
    3. Kapcia, Konrad Jerzy & Murawski, Szymon & Kłobus, Waldemar & Robaszkiewicz, Stanisław, 2015. "Magnetic orderings and phase separations in a simple model of insulating systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 218-234.
    4. Balcerzak, T. & Szałowski, K., 2017. "Hubbard pair cluster in the external fields. Studies of the chemical potential," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 252-266.
    5. Schmidt, M. & Kohlrausch, G.L. & Zimmer, F.M., 2022. "The frustrated Ising model on the body-centered cubic lattice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    6. Balcerzak, T. & Szałowski, K., 2018. "Hubbard pair cluster in the external fields. Studies of the polarization and susceptibility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1069-1084.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:461:y:2016:i:c:p:487-497. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.