IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v458y2016icp303-312.html
   My bibliography  Save this article

Correlated biased random walk with latency in one and two dimensions: Asserting patterned and unpredictable movement

Author

Listed:
  • Rodriguez-Horta, E.
  • Estevez-Rams, E.
  • Lora-Serrano, R.
  • Fernández, B. Aragón

Abstract

The correlated biased random walk with latency in one and two dimensions is discussed with regard to the portion of irreducible random movement and structured movement. It is shown how a quantitative analysis can be carried out by using computational mechanics. The stochastic matrix for both dynamics are reported. Latency introduces new states in the finite state machine description of the system in both dimensions, allowing for a full nearest neighbor coordination in the two dimensional case. Complexity analysis is used to characterize the movement, independently of the set of control parameters, making it suitable for the discussion of other random walk models. The complexity map of the system dynamics is reported for the two dimensional case.

Suggested Citation

  • Rodriguez-Horta, E. & Estevez-Rams, E. & Lora-Serrano, R. & Fernández, B. Aragón, 2016. "Correlated biased random walk with latency in one and two dimensions: Asserting patterned and unpredictable movement," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 303-312.
  • Handle: RePEc:eee:phsmap:v:458:y:2016:i:c:p:303-312
    DOI: 10.1016/j.physa.2016.03.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116300152
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.03.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pottier, Noëlle, 1996. "Analytic study of the effect of persistence on a one-dimensional biased random walk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 230(3), pages 563-576.
    2. García-Pelayo, Ricardo, 2007. "Solution of the persistent, biased random walk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 143-149.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vallois, Pierre & Tapiero, Charles S., 2007. "Memory-based persistence in a counting random walk process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 303-317.
    2. Vallois, Pierre & Tapiero, Charles S., 2009. "A claims persistence process and insurance," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 367-373, June.
    3. Van der Straeten, Erik & Naudts, Jan, 2008. "The 3-dimensional random walk with applications to overstretched DNA and the protein titin," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(27), pages 6790-6800.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:458:y:2016:i:c:p:303-312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.