IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v230y1996i3p563-576.html
   My bibliography  Save this article

Analytic study of the effect of persistence on a one-dimensional biased random walk

Author

Listed:
  • Pottier, Noëlle

Abstract

An analytic study of a one-dimensional biased random walk with correlations between nearest-neighbour steps is presented, both in a lattice model and in its continuous version. First, the treatment of the unbiased problem is recalled and the effect of correlations on the diffusion coefficient is discussed. Then the study is extended to the biased case. The problem is then completely determined by two independent parameters, the degree of correlations in the motion on the one hand and the value of the bias on the other. Both the velocity of the particle and its diffusion coefficient are computed. As a result, the velocity as well as the diffusion coefficient are enhanced when there are positive correlations (qualified as persistence) in the motion, and reduced in the opposite case.

Suggested Citation

  • Pottier, Noëlle, 1996. "Analytic study of the effect of persistence on a one-dimensional biased random walk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 230(3), pages 563-576.
  • Handle: RePEc:eee:phsmap:v:230:y:1996:i:3:p:563-576
    DOI: 10.1016/0378-4371(96)00075-1
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0378437196000751
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/0378-4371(96)00075-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rodriguez-Horta, E. & Estevez-Rams, E. & Lora-Serrano, R. & Fernández, B. Aragón, 2016. "Correlated biased random walk with latency in one and two dimensions: Asserting patterned and unpredictable movement," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 303-312.
    2. Vallois, Pierre & Tapiero, Charles S., 2007. "Memory-based persistence in a counting random walk process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 303-317.
    3. Vallois, Pierre & Tapiero, Charles S., 2009. "A claims persistence process and insurance," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 367-373, June.

    More about this item

    Keywords

    Fluctuation phenomena; Random walks;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:230:y:1996:i:3:p:563-576. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.