IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v451y2016icp533-540.html
   My bibliography  Save this article

Open channel current noise analysis of S6 peptides from KvAP channel on bilayer lipid membrane shows bimodal power law scaling

Author

Listed:
  • Shrivastava, Rajan
  • Malik, Chetan
  • Ghosh, Subhendu

Abstract

Open channel current noise in synthetic peptide S6 of KvAP channel was investigated in a voltage clamp experiment on bilayer lipid membrane (BLM). It was observed that the power spectral density (PSD) of the component frequencies follows power law with different slopes in different frequency ranges. In order to know the origin of the slopes PSD analysis was done with signal filtering. It was found that the first slope in the noise profile follows 1/f pattern which exists at lower frequencies and has high amplitude current noise, while the second slope corresponds to 1/f2−3 pattern which exists at higher frequencies with low amplitude current noise. In addition, white noise was observed at very large frequencies. It was concluded that the plausible reason for the multiple power-law scaling is the existence of different modes of non-equilibrium ion transport through the S6 channel.

Suggested Citation

  • Shrivastava, Rajan & Malik, Chetan & Ghosh, Subhendu, 2016. "Open channel current noise analysis of S6 peptides from KvAP channel on bilayer lipid membrane shows bimodal power law scaling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 533-540.
  • Handle: RePEc:eee:phsmap:v:451:y:2016:i:c:p:533-540
    DOI: 10.1016/j.physa.2016.01.079
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116001436
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.01.079?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Youxing Jiang & Alice Lee & Jiayun Chen & Vanessa Ruta & Martine Cadene & Brian T. Chait & Roderick MacKinnon, 2003. "X-ray structure of a voltage-dependent K+ channel," Nature, Nature, vol. 423(6935), pages 33-41, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ozer, Mahmut, 2005. "Determination of rate kinetics in ion channels by the path probability method and Onsager reciprocity theorem," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 357(3), pages 397-414.
    2. Turkan Haliloglu & Nir Ben-Tal, 2008. "Cooperative Transition between Open and Closed Conformations in Potassium Channels," PLOS Computational Biology, Public Library of Science, vol. 4(8), pages 1-11, August.
    3. Tobias Linder & Bert L de Groot & Anna Stary-Weinzinger, 2013. "Probing the Energy Landscape of Activation Gating of the Bacterial Potassium Channel KcsA," PLOS Computational Biology, Public Library of Science, vol. 9(5), pages 1-9, May.
    4. Bryan Cernuda & Christopher Thomas Fernandes & Salma Mohamed Allam & Matthew Orzillo & Gabrielle Suppa & Zuleen Chia Chang & Demosthenes Athanasopoulos & Zafir Buraei, 2019. "The molecular determinants of R-roscovitine block of hERG channels," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-26, September.
    5. Jin Wang & Zeyuan Song & Miaolu He & Yongchao Qian & Di Wang & Zheng Cui & Yuan Feng & Shangzhen Li & Bo Huang & Xiangyu Kong & Jinming Han & Lei Wang, 2024. "Light-responsive and ultrapermeable two-dimensional metal-organic framework membrane for efficient ionic energy harvesting," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Spencer C. Guo & Rong Shen & Benoît Roux & Aaron R. Dinner, 2024. "Dynamics of activation in the voltage-sensing domain of Ciona intestinalis phosphatase Ci-VSP," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Marcos Matamoros & Xue Wen Ng & Joshua B. Brettmann & David W. Piston & Colin G. Nichols, 2023. "Conformational plasticity of NaK2K and TREK2 potassium channel selectivity filters," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:451:y:2016:i:c:p:533-540. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.