IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v450y2016icp657-669.html
   My bibliography  Save this article

Evolutionary features of academic articles co-keyword network and keywords co-occurrence network: Based on two-mode affiliation network

Author

Listed:
  • Li, Huajiao
  • An, Haizhong
  • Wang, Yue
  • Huang, Jiachen
  • Gao, Xiangyun

Abstract

Keeping abreast of trends in the articles and rapidly grasping a body of article’s key points and relationship from a holistic perspective is a new challenge in both literature research and text mining. As the important component, keywords can present the core idea of the academic article. Usually, articles on a single theme or area could share one or some same keywords, and we can analyze topological features and evolution of the articles co-keyword networks and keywords co-occurrence networks to realize the in-depth analysis of the articles. This paper seeks to integrate statistics, text mining, complex networks and visualization to analyze all of the academic articles on one given theme, complex network(s). All 5944 “complex networks” articles that were published between 1990 and 2013 and are available on the Web of Science are extracted. Based on the two-mode affiliation network theory, a new frontier of complex networks, we constructed two different networks, one taking the articles as nodes, the co-keyword relationships as edges and the quantity of co-keywords as the weight to construct articles co-keyword network, and another taking the articles’ keywords as nodes, the co-occurrence relationships as edges and the quantity of simultaneous co-occurrences as the weight to construct keyword co-occurrence network. An integrated method for analyzing the topological features and evolution of the articles co-keyword network and keywords co-occurrence networks is proposed, and we also defined a new function to measure the innovation coefficient of the articles in annual level. This paper provides a useful tool and process for successfully achieving in-depth analysis and rapid understanding of the trends and relationships of articles in a holistic perspective.

Suggested Citation

  • Li, Huajiao & An, Haizhong & Wang, Yue & Huang, Jiachen & Gao, Xiangyun, 2016. "Evolutionary features of academic articles co-keyword network and keywords co-occurrence network: Based on two-mode affiliation network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 657-669.
  • Handle: RePEc:eee:phsmap:v:450:y:2016:i:c:p:657-669
    DOI: 10.1016/j.physa.2016.01.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711600025X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.01.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Huajiao & An, Haizhong & Gao, Xiangyun & Huang, Jiachen & Xu, Qun, 2014. "On the topological properties of the cross-shareholding networks of listed companies in China: Taking shareholders’ cross-shareholding relationships into account," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 80-88.
    2. An, Haizhong & Gao, Xiangyun & Fang, Wei & Huang, Xuan & Ding, Yinghui, 2014. "The role of fluctuating modes of autocorrelation in crude oil prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 382-390.
    3. Xiangyun Gao & Haizhong An & Weiqiong Zhong, 2013. "Features of the Correlation Structure of Price Indices," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-9, April.
    4. Xia, X.H. & Chen, Y.B. & Li, J.S. & Tasawar, H. & Alsaedi, A. & Chen, G.Q., 2014. "Energy regulation in China: Objective selection, potential assessment and responsibility sharing by partial frontier analysis," Energy Policy, Elsevier, vol. 66(C), pages 292-302.
    5. Zhong, Weiqiong & An, Haizhong & Gao, Xiangyun & Sun, Xiaoqi, 2014. "The evolution of communities in the international oil trade network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 42-52.
    6. Li, Huajiao & Fang, Wei & An, Haizhong & Yan, LiLi, 2014. "The shareholding similarity of the shareholders of the worldwide listed energy companies based on a two-mode primitive network and a one-mode derivative holding-based network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 525-532.
    7. Hidalgo, Cesar A. & Rodriguez-Sickert, C., 2008. "The dynamics of a mobile phone network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 3017-3024.
    8. Xia, X.H. & Huang, G.T. & Chen, G.Q. & Zhang, Bo & Chen, Z.M. & Yang, Q., 2011. "Energy security, efficiency and carbon emission of Chinese industry," Energy Policy, Elsevier, vol. 39(6), pages 3520-3528, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xi, Xian & An, Haizhong, 2018. "Research on energy stock market associated network structure based on financial indicators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1309-1323.
    2. An, Pengli & Li, Huajiao & Zhou, Jinsheng & Chen, Fan, 2017. "The evolution analysis of listed companies co-holding non-listed financial companies based on two-mode heterogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 558-568.
    3. Li, Huajiao & An, Haizhong & Huang, Jiachen & Huang, Xuan & Mou, Songtao & Shi, Yanli, 2016. "The evolutionary stability of shareholders’ co-holding behavior for China’s listed energy companies based on associated maximal connected sub-graphs of derivative holding-based networks," Applied Energy, Elsevier, vol. 162(C), pages 1601-1607.
    4. An, Qier & An, Haizhong & Wang, Lang & Gao, Xiangyun & Lv, Na, 2015. "Analysis of embodied exergy flow between Chinese industries based on network theory," Ecological Modelling, Elsevier, vol. 318(C), pages 26-35.
    5. Li, Huajiao & Fang, Wei & An, Haizhong & Gao, Xiangyun & Yan, Lili, 2016. "Holding-based network of nations based on listed energy companies: An empirical study on two-mode affiliation network of two sets of actors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 224-232.
    6. Hao, Xiaoqing & An, Haizhong & Qi, Hai & Gao, Xiangyun, 2016. "Evolution of the exergy flow network embodied in the global fossil energy trade: Based on complex network," Applied Energy, Elsevier, vol. 162(C), pages 1515-1522.
    7. An, Haizhong & Gao, Xiangyun & Fang, Wei & Ding, Yinghui & Zhong, Weiqiong, 2014. "Research on patterns in the fluctuation of the co-movement between crude oil futures and spot prices: A complex network approach," Applied Energy, Elsevier, vol. 136(C), pages 1067-1075.
    8. Sun, Qingru & Gao, Xiangyun & Zhong, Weiqiong & Liu, Nairong, 2017. "The stability of the international oil trade network from short-term and long-term perspectives," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 345-356.
    9. Li, Huajiao & Fang, Wei & An, Haizhong & Yan, LiLi, 2014. "The shareholding similarity of the shareholders of the worldwide listed energy companies based on a two-mode primitive network and a one-mode derivative holding-based network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 525-532.
    10. Zhong, Weiqiong & An, Haizhong & Gao, Xiangyun & Sun, Xiaoqi, 2014. "The evolution of communities in the international oil trade network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 42-52.
    11. Li, Huajiao & An, Haizhong & Liu, Xueyong & Gao, Xiangyun & Fang, Wei & An, Feng, 2016. "Price fluctuation in the energy stock market based on fluctuation and co-fluctuation matrix transmission networks," Energy, Elsevier, vol. 117(P1), pages 73-83.
    12. An, Feng & Gao, Xiangyun & Guan, Jianhe & Huang, Shupei & Liu, Qian, 2017. "Modeling the interdependent network based on two-mode networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 57-67.
    13. Sun, Bowen & Li, Huajiao & An, Pengli & Wang, Ze, 2020. "Dynamic energy stock selection based on shareholders’ coholding network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    14. Gao, Xiangyun & An, Haizhong & Fang, Wei & Li, Huajiao & Sun, Xiaoqi, 2014. "The transmission of fluctuant patterns of the forex burden based on international crude oil prices," Energy, Elsevier, vol. 73(C), pages 380-386.
    15. Lijun Wang & Haizhong An & Xiaohua Xia & Xiaojia Liu & Xiaoqi Sun & Xuan Huang, 2014. "Generating Moving Average Trading Rules on the Oil Futures Market with Genetic Algorithms," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-10, May.
    16. Zhong, Weiqiong & An, Haizhong & Shen, Lei & Fang, Wei & Gao, Xiangyun & Dong, Di, 2017. "The roles of countries in the international fossil fuel trade: An emergy and network analysis," Energy Policy, Elsevier, vol. 100(C), pages 365-376.
    17. Wang, Minggang & Chen, Ying & Tian, Lixin & Jiang, Shumin & Tian, Zihao & Du, Ruijin, 2016. "Fluctuation behavior analysis of international crude oil and gasoline price based on complex network perspective," Applied Energy, Elsevier, vol. 175(C), pages 109-127.
    18. An, Pengli & Zhou, Jinsheng & Li, Huajiao & Sun, Bowen & Shi, Yanli, 2018. "The evolutionary similarity of the co-shareholder relationship network from institutional and non-institutional shareholder perspectives," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 439-450.
    19. Sun, Xiaoqi & An, Haizhong & Gao, Xiangyun & Jia, Xiaoliang & Liu, Xiaojia, 2016. "Indirect energy flow between industrial sectors in China: A complex network approach," Energy, Elsevier, vol. 94(C), pages 195-205.
    20. Zhong, Weiqiong & An, Haizhong & Shen, Lei & Dai, Tao & Fang, Wei & Gao, Xiangyun & Dong, Di, 2017. "Global pattern of the international fossil fuel trade: The evolution of communities," Energy, Elsevier, vol. 123(C), pages 260-270.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:450:y:2016:i:c:p:657-669. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.