IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v450y2016icp323-332.html
   My bibliography  Save this article

Multifractal detrended moving average analysis of particle density functions in relativistic nuclear collisions

Author

Listed:
  • Mali, Provash
  • Mukhopadhyay, Amitabha
  • Singh, Gurmukh

Abstract

Fluctuations in particle density functions in 28Si+Ag(Br) collision at 14.5A GeV and 32S+Ag(Br) collision at 200A GeV are investigated using the multifractal detrended moving average (MFDMA) method. Multifractal parameters obtained from the data analysis are systematically compared with the ultra-relativistic quantum molecular dynamics (UrQMD) model simulation. It is found that the single particle density functions in both the experiments are multifractal in nature. Further, the degree of multifractality in the simulated event samples is almost equal to the corresponding empirical data. The results of this analysis differ significantly from those obtained from other conventional techniques of multifractal analysis previously used for the same sets of data.

Suggested Citation

  • Mali, Provash & Mukhopadhyay, Amitabha & Singh, Gurmukh, 2016. "Multifractal detrended moving average analysis of particle density functions in relativistic nuclear collisions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 323-332.
  • Handle: RePEc:eee:phsmap:v:450:y:2016:i:c:p:323-332
    DOI: 10.1016/j.physa.2016.01.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116000625
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.01.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mali, P. & Sarkar, S. & Ghosh, S. & Mukhopadhyay, A. & Singh, G., 2015. "Multifractal detrended fluctuation analysis of particle density fluctuations in high-energy nuclear collisions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 25-33.
    2. Wang, Yudong & Wu, Chongfeng & Pan, Zhiyuan, 2011. "Multifractal detrending moving average analysis on the US Dollar exchange rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3512-3523.
    3. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    4. Gao-Feng Gu & Wei-Xing Zhou, 2010. "Detrending moving average algorithm for multifractals," Papers 1005.0877, arXiv.org, revised Jun 2010.
    5. Chianca, C.V. & Ticona, A. & Penna, T.J.P., 2005. "Fourier-detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 357(3), pages 447-454.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mali, P. & Manna, S.K. & Haldar, P.K. & Mukhopadhyay, A. & Singh, G., 2017. "Detrended analysis of shower track distribution in nucleus-nucleus interactions at CERN SPS energy," Chaos, Solitons & Fractals, Elsevier, vol. 94(C), pages 86-94.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mali, P. & Manna, S.K. & Haldar, P.K. & Mukhopadhyay, A. & Singh, G., 2017. "Detrended analysis of shower track distribution in nucleus-nucleus interactions at CERN SPS energy," Chaos, Solitons & Fractals, Elsevier, vol. 94(C), pages 86-94.
    2. Dutta, Srimonti & Ghosh, Dipak & Samanta, Shukla, 2014. "Multifractal detrended cross-correlation analysis of gold price and SENSEX," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 195-204.
    3. He, Shanshan & Wang, Yudong, 2017. "Revisiting the multifractality in stock returns and its modeling implications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 11-20.
    4. Sarker, Alivia & Mali, Provash, 2021. "Detrended multifractal characterization of Indian rainfall records," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    5. Cao, Guangxi & Xu, Longbing & Cao, Jie, 2012. "Multifractal detrended cross-correlations between the Chinese exchange market and stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4855-4866.
    6. Zhang, Chen & Ni, Zhiwei & Ni, Liping & Li, Jingming & Zhou, Longfei, 2016. "Asymmetric multifractal detrending moving average analysis in time series of PM2.5 concentration," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 322-330.
    7. Ruan, Qingsong & Zhou, Mi & Yin, Linsen & Lv, Dayong, 2021. "Hedging effectiveness of Chinese Treasury bond futures: New evidence based on nonlinear analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    8. Stošić, Darko & Stošić, Dusan & Stošić, Tatijana & Stanley, H. Eugene, 2015. "Multifractal analysis of managed and independent float exchange rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 13-18.
    9. Delbianco, Fernando & Tohmé, Fernando & Stosic, Tatijana & Stosic, Borko, 2016. "Multifractal behavior of commodity markets: Fuel versus non-fuel products," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 573-580.
    10. Shi, Wen & Zou, Rui-biao & Wang, Fang & Su, Le, 2015. "A new image segmentation method based on multifractal detrended moving average analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 197-205.
    11. Ghazani, Majid Mirzaee & Khosravi, Reza, 2020. "Multifractal detrended cross-correlation analysis on benchmark cryptocurrencies and crude oil prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    12. Wang, Dong-Hua & Yu, Xiao-Wen & Suo, Yuan-Yuan, 2012. "Statistical properties of the yuan exchange rate index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(12), pages 3503-3512.
    13. Zhuang, Xiaoyang & Wei, Yu & Ma, Feng, 2015. "Multifractality, efficiency analysis of Chinese stock market and its cross-correlation with WTI crude oil price," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 430(C), pages 101-113.
    14. Yudong Wang & Chongfeng Wu, 2013. "Efficiency of Crude Oil Futures Markets: New Evidence from Multifractal Detrending Moving Average Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 42(4), pages 393-414, December.
    15. Argyroudis, G. & Siokis, F., 2018. "The complexity of the HANG SENG Index and its constituencies during the 2007–2008 Great Recession," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 463-474.
    16. Ji, Qiangbiao & Zhang, Xin & Zhu, Yingming, 2020. "Multifractal analysis of the impact of US–China trade friction on US and China soy futures markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    17. Zhou, Weijie & Dang, Yaoguo & Gu, Rongbao, 2013. "Efficiency and multifractality analysis of CSI 300 based on multifractal detrending moving average algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1429-1438.
    18. Wang, Yudong & Wu, Chongfeng, 2012. "What can we learn from the history of gasoline crack spreads?: Long memory, structural breaks and modeling implications," Economic Modelling, Elsevier, vol. 29(2), pages 349-360.
    19. Milena Kojić & Petar Mitić & Marko Dimovski & Jelena Minović, 2021. "Multivariate Multifractal Detrending Moving Average Analysis of Air Pollutants," Mathematics, MDPI, vol. 9(7), pages 1-17, March.
    20. Zhang, Xin & Zhu, Yingming & Yang, Liansheng, 2018. "Multifractal detrended cross-correlations between Chinese stock market and three stock markets in The Belt and Road Initiative," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 105-115.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:450:y:2016:i:c:p:323-332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.